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Abstract

This vignette demonstrates the use of the UncertainInterval package for the determi-
nation of an interval of uncertain or inconclusive scores of medical tests. It is demonstrated
using a large synthetic but realistic data set, with results of the Montreal Cognitive As-
sessment (MoCA) for the detection of cognitive impairment (CI). It is shown that a more
robust result can be expected upon avoiding the range of test scores within which most
classification errors are expected, with adequate predictive values for more clinical set-
tings. The clinical settings show sample prevalence’s of cognitive impairment that vary
widely from .22 to .88. The analysis with the UncertainInterval package shows a middle
range of test scores that does not differentiate sufficiently between the two true classes of
patients. This interval includes a relatively large part of all errors, when compared to an
optimal dichotomous threshold that minimizes the sum of errors. Excluding this uncertain
or inconclusive range of test scores offers higher classification accuracies for the samples
of individual clinical settings. In comparison to a dichotomous threshold, excluding the
most error prone test scores enable a classification that offers adequate accuracies in a
larger number of clinical settings.
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1. Introduction

This paper demonstrates the use of the RPV and other functions of the UncertainInterval
package for the determination of test scores that are uncertain or inconclusive. This results
in three classes: a class of patients with test scores that indicate with a large probability the
absence of the targeted impairment, a class of patients with test results that are uncertain or
inconclusive, and a class of patients with test scores that most probable indicate the presence
of the targeted impairment. This demonstration uses the test scores of the Montreal Cognitive
Assessment (MoCA) for the screening of cognitive impairment. The hands-on examples start
in paragraph 6.1 and can be applied with version 0.6 or later of the UncertainInterval package.

Typically, medical tests are applied to patients who come to a clinical center for their health
complaints via referral or by their own choice. In contrast to research samples, these patients
are not randomly selected nor can random selection be assumed. Moreover, the population or
sub-populations to which they belong can only be defined by thorough investigation of their
characteristics. In practice, such research is applied to a part of all patients, a clinical sample
that may demonstrate the characteristics of that population.
A medical test is a procedure performed on a patient with a suspected illness to confirm or
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determine the presence of the illness. It is relevant for the determination of the targeted
disease to know the prevalence or proportion of affected individuals within a population. For
the group of patients for whom the disease is suspected, the probability of the disease is often
considerably higher than the probability of the disease in the general population. For this
reason, the prevalence is often estimated by using the prevalence in the clinical samples of
patients, instead of the (much lower) prevalence in the general population. Unsurprisingly,
these estimates based on clinical samples can vary widely. The basic question targeted in this
paper is how to deal with widely varying estimates of prevalence. The method presented does
not solve this problem but enables a classification that offers adequate accuracy in a larger
number of clinical settings.

The screening of patients on the possible presence of a disease forms a complicated challenge
for both primary care physicians and statisticians. As a running example, data of the Mon-
treal Cognitive Assessment (MoCA) is used. The MoCA (Montreal Cognitive Assessment)
is considered as one of the best tests for detection of the possible presence of cognitive im-
pairment in patients. The test has found world-wide application (Freitas, Simões, Alves, and
Santana 2013; Larner 2012; Martinelli, Cecato, Bartholomeu, and Montiel 2014). The results
of the test may have serious consequences for the patient, even when it is only considered
as a first step in the diagnostic process. A false positive may directly lead to cost intensive
further testing and may indirectly lead to loss of independence, which may form a frightening
perspective for the patient. A false negative may prevent the patient from receiving the help
needed to create optimal conditions of life. A decision for or against the presence of cognitive
impairment is further complicated as the elderly patient may suffer temporary loss of cogni-
tive abilities due to tiredness, environmental heat, a temporary illness, or the use of drugs
for other diseases (Shiota, Torimoto, Momose, Nakamuro, Mochizuki, Kumamoto, Hirayama,
and Fujimoto 2014). It is therefore undesirable to jump to conclusions.
The MoCA test is commonly used with a single cutoff score of 26 out of a maximum of 30,
with scores 0 to 25 used for a classification of the presence of cognitive impairment and a score
of 26 to 30 for the classification of its absence (Nasreddine, Phillips, Bédirian, Charbonneau,
Whitehead, Collin, Cummings, and Chertkow 2005). Although this single cutoff score has
been challenged by various researchers (Damian, Jacobson, Hentz, Belden, Shill, Sabbagh,
Caviness, and Adler 2011; Davis, Creavin, Yip, Noel-Storr, Brayne, and Cullum 2015; Freitas
et al. 2013), the proposals for alternative cutoff scores remain dichotomized, without consid-
ering the possibility of uncertainty in test outcomes.
The model presented here defines three intervals: 1) an interval of uncertain scores where
the patients have about equal probability to be classified with the targeted disease or not;
2) a lower range of test scores that indicates the presence of cognitive impairment with high
probability; and 3) an upper range of test scores that indicates normal cognitive functioning
with high probability. In this way, test scores are trichotomized and interpreted in a way that
is straightforward and can be used without much complications in primary care.
On the one hand, this is slightly more complicated than the usual dichotomization methods
(Pepe 2003) that are currently applied most frequently for medical decision making, including
the determination of possible cognitive impairment. On the other hand, there are far more
sophisticated ways to come to individualized predictions (Sheiner and Beal 1982). These
methods are often more complicated (Cripps, Wood, Beckmann, Lau, Beckmann, and Cripps
2016), often do not lead to a single and simple interpretable rule (Logan, Sparapani, Mc-
Culloch, and Laud 2019) or use a ‘black box’ prediction model that is difficult to explain to
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clinicians (Logan et al. 2019). A simpler method may be more practical.
Including the commonly used dichotomization methods, any data-based decision process is a
complex form of statistical reasoning, where multiple population estimates are based on the
observed individual outcomes of a sample of patients (statistical inference) and then these
population estimates are used to interpret the individual patient test score (statistical syllo-
gism). The population estimates assume that the results based on other clinical samples will
mirror the results of the sample used in a study.
The basics of the most commonly used method (Receiver Operating Characteristics or ROC)
is to consider it as a two-class prediction problem (binary classification) of two samples of
patients for whom the true status of their illness is known: a sample of patients selected from
the population of patients that are truly affected by the targeted impairment and a sample of
patients selected from the population that is not affected (Pepe 2003). The process of select-
ing the patients from these two populations requires a measurement that is superior to the
evaluated medical test, known as a binary gold standard or criterion standard. Subsequently,
there are four possible outcomes when a two-class classifier with a single threshold is used.
If the outcome from a classification is the possible presence of the disease and the patient is
selected form the sample of patients with the illness, this is called a true positive (TP). When
the test result points to the absence of the impairment for a patient selected from the sample
of patients with the impairment, it is considered a false positive (FP). A true negative (TN)
occurs when the classification outcome is the absence of the impairment and the patient is
selected from the sample of patients without the impairment, and a false negative (FN) is
found when the classification outcome is the absence of the impairment while the patient is
selected from the sample of patients that do have the impairment.
The common way to find a suitable dichotomous cutoff score is the use of the receiver operat-
ing characteristics of the test, the true positive rate (TPR = Sensitivity = TP/(TP +FN))
against the false positive rate (FPR = 1 − Specificity = 1 − TN/(TN + FP )), where all
possible test scores are considered as possible thresholds to form two classes. The origi-
nal proposal of Nasreddine et al. (2005) for the dichotomous cutoff score of the MoCA is
based on the balance of sensitivity (Se) and specificity (Sp). A more usual solution is the
optimization of the sum of Se and Sp, following the proposals of Youden (Youden 1950).
This solution also minimizes the sum of the False Positives (FP = 1 − Sp) and False Neg-
atives (FN = 1 − Se) as it minimizes the proportions of the sum of both type of errors
Max(Se+Sp) = Min(1−Sp+ 1−Se). It is often considered as the optimal threshold. The
cutoff score that is defined in this way, is equal to the point of intersection of the densities of
the two samples of patients (Schisterman, Perkins, Liu, and Bondell 2005). This is the point
where the two samples show no difference in their densities or relative frequencies, and one
might say that the optimal threshold is also the point where it is impossible to distinguish
the two samples based on the test score alone. In this paper, the optimal threshold is also
considered as the test score that offers maximal classification uncertainty.
Many researchers have argued for the allowance of uncertainty when interpreting test out-
comes, both in the past (Coste, Jourdain, and Pouchot 2006; Coste and Pouchot 2003; Fe-
instein 1990; Greiner 1995; Simel, Feussner, Delong, and Matchar 1987) and more recently
(Hofmann 2019; Landsheer 2016, 2018; Schuetz, Schlattmann, and Dewey 2012; Shinkins
and Perera 2013). However, this has not resulted in a change of preferred methods, and
dichotomization using Receiver Operating Characteristics is still the most used methodology.
In this paper, the interval of uncertain test scores is defined as an interval around the point
of intersection in which the densities of the two samples of patients with and without the
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targeted impairment are about the same. The size of this interval is dependent on the quality
of the test (the better the test, the smaller the interval) and the amount of uncertainty that
is allowed. The allowable amount of uncertainty is of course a subject for discussion.

2. Data

2.1. Data set

The original data of 5019 patients is part of the Uniform Data Set (UDS), collected by the
University of Washington’s National Alzheimer’s Coordinating Center (NACC) and has been
described extensively (Beekly, Ramos, Lee, Deitrich, Jacka, Wu, Hubbard, Koepsell, Morris,
and Kukull 2007; Weintraub, Salmon, Mercaldo, Ferris, Graff-Radford, Chui, Cummings, De-
Carli, Foster, and Galasko 2009). Results of the original data are available in (Landsheer In
press). The results in this paper are based on an anonymised, synthesized data set (synth-
data NACC) that can be published (with the kind permission of the NACC). The MoCA data
has been collected in the period from March 2015 to August 2018. The test results of 5531
patients at their first visit are available. Participants were examined in 30 US ADCs. Consent
was obtained at each individual ADC. The subject’s cognitive status has been determined at
every visit: normal cognition (NC), cognitively impaired but not meeting the criteria for MCI,
mild cognitive impairment (MCI) and Dementia. The CDR® Dementia Staging Instrument
(CDR) was used (Morris 1997; Morris, Ernesto, Schafer, Coats, Leon, Sano, Thal, and Wood-
bury 1997)) and the global CDR score was calculated using the defined scoring algorithm.
This score is useful for characterizing a patient’s level of cognitive impairment / dementia,
with score 0 indicating normal cognitive functioning.

The original data set is available for researchers from the National Alzheimer’s Coordinat-
ing Center https://www.alz.washington.edu/WEB/nacc_handbook.html. Also, see the ac-
knowledgement at the end of the paper.

2.2. Gold standard

The patients with and without cognitive impairment are defined with their cognitive status
and the global CDR at their first visit to the ADC. Following Weintraub et al. (Weintraub,
Besser, Dodge, Teylan, Ferris, Goldstein, Giordani, Kramer, Loewenstein, and Marson 2018),
the norm group is defined with a cognitive status of Normal Cognition and a global CDR score
of 0, while the other patients are defined as having minor or serious cognitive impairment (a
cognitive status other than NC and CDR > 0). Patients who have received an ambiguous
assessment (CDR > 0 and a cognitive status of NC, or a CDR of 0 and a cognitive status
other than NC) have been excluded (n = 512). Participants in the norm group who achieved
low scores on the MoCA were not removed from the analyses as the patient’s status was not
defined by the test. This resulted in a healthy norm group of size 2379 and a group with
a varying level of cognitive impairment of 2640, a total of 5019 patients. The prevalence of
cognitive impairment is .53.

2.3. Synthesized example data

For use as an example, with kind permission of the NACC, a single data set of 6670 obser-

https://www.alz.washington.edu/WEB/nacc_handbook.html
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vations from 30 different clinical centers is generated using the NACC data set as a base. To
generate the artificial data, the R package synthpop (Nowok, Raab, and Dibben 2016) was
used. Results of the real data are available in (Landsheer In press). Clearly, these example
data differs from those derived from the true NACC data set. Nevertheless, the statistical
results are comparable enough to demonstrate the different methods in the package Uncer-
tainInterval. This data set is named synthdata NACC. The data set contains 8 variables:
ID, center, ref.1, MOCATOTS.1, vdate.1, ref.2, MOCATOTS.2, and vdate.2, respectively
(renumbered) person ID, (renamed) ID of the clinical center, reference measurement of the
true presence of cognitive impairment at the first measurement, the MoCA total score at
the first measurement, the data of the first measurement, reference measurement of the true
presence of cognitive impairment at the second measurement, the MoCA total score at the
second measurement and the date of the second measurement. At the first measurement,
there are 2433 observations of patients with no clinical assessment of cognitive impairment
and 2644 observations with a clinical assessment of some form of cognitive impairment.

Researchers who want to use these data for other purposes than replication of the results
presented here, are kindly requested to submit a new request for the original data to the
NACC. The user of the data may either get a new file or request a file using the specifications
of the original data file (https://www.alz.washington.edu/).

3. The problem of prevalence

The prevalence of a disorder can vary widely between different clinical institutions. In the
original NACC data set, prevalence of cognitive impairment varied from .22 to .87 for the
different centers. In the total sample, the prevalence was .53. In clinical samples, the patients
are not randomly chosen, but arrive at a clinical center by referral or by choice. It is therefore
difficult to determine a generally valid estimate of prevalence and clinical samples are difficult
to compare with each other.
The optimal cutoff scores for the individual ADCs vary from 19 to 26, with scores smaller or
equal to the optimal cutoff score indicating the possible presence of cognitive impairment. The
optimal cutoff score for the total sample is 23. When the prevalence is low, the large number
of patients without the impairment results in a large number of patients that are erroneously
classified positive (false positives). When prevalence is high, a large number of patients with
the impairment receives a negative classification (false negatives). Consequently, the patterns
of incorrect classification differ widely, are strongly correlated with prevalence and result in a
wide variation of negative and positive predictive values (NPV and PPV ). The proportion
of correctly classified patients can and will vary dramatically between clinical settings with
different prevalence. In general, prevalence is strongly positively correlated to the proportion
of correctly classified true patients, and negatively correlated with the proportion of correctly
classified patients without the impairment. Seemingly, this reflects negatively on the clinical
setting, while in reality a relatively large or small proportion of miss-classifications is due to
a large or small proportion of patients with the impairment.
Prevalence has no effect on sensitivity and specificity, provided that the two patient samples
are drawn from the same populations of patients with and without the targeted condition.
This makes sensitivity and specificity excellent markers of the accuracy of the test, allowing
for the comparison of different samples with varying prevalence and allowing for comparing
different tests using the same sample. It is however problematic that this does not inform us

https://www.alz.washington.edu/
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about the accuracy of the test result for the patients involved. Se and Sp provide information
about the proportion of correctly diagnosed patients, when given knowledge about the true
status of the patient. Obviously, this latter piece of information is not available when a new
patient is screened (Gallagher 2003). Despite the prevalence problems mentioned above, a
positive or negative predictive value (PPV or NPV ) provides a clear interpretation for pa-
tients: it indicates the probability of a correct classification, given the test result (Gallagher
2003). Predictive values consequently provide information about the accuracy of the classifi-
cation obtained in the clinical setting.
Ransohoff & Feinstein (1978) have stressed that the problem with prevalence is further com-
plicated due to differences in spectrum bias, when the patients are selected from various
(sub)populations with a different mix of patients. In that case, varying values can also be ex-
pected for Se and Sp and these values can be dependent on prevalence (Brenner and Gefeller
1997; Usher-Smith, Sharp, and Griffin 2016).
The predictive values (PPV and NPV ) provide the proportions of patients classified correctly
in the clinical setting and a low proportion may give reason for concern. Fundamentally, this
concern can be addressed by using better tests, but these may not be available. The raw
classification performance expressed as NPV and PPV at one clinic is not predictive of the
classification performance at another and clinics cannot be compared in this way. A proposal
to address this comparability problem is to use standardized predictive values that recalculate
the predictive values for an assumed prevalence of .5 (Heston 2011, 2014).
It is difficult to estimate prevalence for clinical samples. It is clear that patients being tested
for a specific disease are not randomly selected from the general population, but are selected
by referral or self-referral. Furthermore, it is unknown from which (sub)population they are
selected. Heston (2014) argued that as diagnostic tests are most frequently ordered when
the diagnosis is unclear (ie, the pretest likelihood of disease is around 50%), standardizing
predictive values to a prevalence of 50% may be more meaningful to the practicing clinician
than estimates based on prevalance. When doing so, these standardized estimates (SNPV
and SPPV ) of the predictive values are no more dependent on prevalence than Se and Sp
(for dichotomized estimates: SPPV = Se/(Se + 1− Sp) and SNPV = Sp/(Sp + 1− Se)).
In this paper, another way is proposed to lessen the problem of prevalence. Although it is
commonly known that tests offer the best predictions in the tails and predictions for the
test scores in the middle are far less predictive, this knowledge is seldom applied when the
cutoff scores are determined for the interpretation of the test results. In such a middle range,
a relatively high proportion of classification errors can be expected. When such a range of
uncertain scores is excluded from a decision for or against the targeted disease, a relatively
large number of errors are prevented, and sufficient classification results for the scores outside
this range can be found more often.

4. Managing uncertain test scores

There are different ways to help patients with uncertain test scores. The first possibility
is to apply further tests to reduce the uncertainty of the classification. This assumes the
availability of another tests that offer additional accuracy. A second possibility is to await
further developments, either by active surveillance or by watchful waiting (Bangma, Bul,
van der Kwast, Pickles, Korfage, Hoeks, Steyerberg, Jenster, Kattan, Bellardita, and al 2013).
When a targeted disease is the most serious and the potential consequences of being left
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untreated cannot be ignored, while effective treatment has no serious side effects for patients
without the targeted disease, it is better to choose treatment even in those cases where
the presence of the disease is the most uncertain (Brown and Reeves 2003; Sonis 1999).
Treatment possibilities, benefits and costs of treatment for both correctly classified patients
and for erroneously classified patients are the more relevant when the classification outcome
is uncertain. Knowledge of the inconclusiveness or uncertainty of the test outcomes can be
most helpful for many medical decisions.

5. Unstandardized and standardized predictive values

When the classification problem is defined as a selection problem, the basic question is whether
a patient is selected from the population of patients with or from the population of patients
without the disease. This question cannot be answered for the individual patient, but it is
possible to estimate the probabilities for the patients that have obtained a specific test score
using Bayesian methods. In the end, the estimates for groups of patients with a given test
score are applied to the single patient with the same test score. The probability estimates are
derived from multiple population estimates. The desired estimates are undoubtedly better
when the samples used for their estimation are larger.

5.1. Predictive values

Predictive values give the probabilities for the presence of the disease, when the obtained
test result is known (Gallagher 2003). Predictive values therefore provide information about
the accuracy of the classification. Usually the negative predictive value (NPV ) is calculated
for the dichotomized range of test scores used for a negative classification (test scores >
dichotomous cut-point c), leading to the formulation NPV = TN/(TN +FN) and the PPV
for positive classifications (the range of test scores <= c; PPV = TP/(TP + FP )), where
TN , FN , TP and FP concerns the number of respectively true negative, false negative, true
positive and false positive observations. A more general definition is needed in the context
of three-way classification. Predictive values indicate the likelihood of the patient’s negative
and positive real status, given the range of test scores x. More generally, predictive values
are based on the observed frequencies in the two samples of patients with and without the
targeted disease. For a range of test scores x, if f0(x) and f1(x) are the frequencies of patients
without and with the targeted disease given x, the negative predictive value (NPV ) can be
defined as: NPV (x) = f0(x)/(f0(x) + f1(x)) and the positive predictive value (PPV ) as:
PPV (x) = f1(x)/(f0(x) + f1(x)). This definition also shows that NPV (x) = 1 − PPV (x)
when calculated for the same range of test scores x.
These predictive values are exact for the observed patients with and without the targeted
disease and are valid for the observed sample prevalence. Interpreting the predictive values of
individual test scores is straightforward. For instance, when 240 true patients from a sample
have score 25, and 257 patients without the targeted disease have score 25 a patient who
receives MoCA test score 25, will consequently have a 240/(240 + 257) = 0.48 probability to
belong to the group with CI. This number is exact for the sample involved. These predictive
values therefore indicate the accuracies of the classifications in the sample, given the range
of applied test score(s). As such, it is an important outcome for evaluating the accuracy of
classification in a sample, given the observed test score(s). For comparisons of methods, this
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paper considers the values of .8 or higher as sufficient, both for NPV and PPV .

5.2. Standardized predictive values.

Heston’s proposal (2011; 2014) to standardize predictive values was made in the context of
a single cut-point. However, it makes sense to also use a more general definition here, and
to relate standardized predictive values to the relative frequencies or densities of the (range
of) test score(s). The densities for a range of test scores x can be defined d0(x) = f0(x)/n0

and d1(x) = f1(x)/n1, where n0 and n1 are the number of observed patients in the two
samples. The standardized negative predictive value (SNPV ) is defined as SNPV (x) =
d0(x)/(d0(x)+d1(x)) and the standardized positive predictive value (SPPV ) as SPPV (x) =
d1(x)/(d0(x) + d1(x)). The two distributions are weighted equally, or in other words, the
prevalence is standardized to .5. The interpretation of the standardized predictive values is
not as straightforward as the interpretation of the common predictive values: they provide
the estimated relative probability which of the two distributions makes the observed test score
most likely, the distribution of the population of patients with or the population without the
disease. If, for instance, 8% of true patients have score 25, and 11% of patients without CI have
score 25, a patient with test score 25 has an estimated relative probability of 8/(8+11) = 0.42
to belong to the population with cognitive impairment and a probability of 0.58 to belong
to the population without cognitive impairment. The estimates improve with larger samples.
Standardized predictive values can be used to identify the range of uncertain test scores that
offer a limited distinction between the populations of patients with and without the targeted
disease. It should also be noted that the predictive values of two samples of patients with
and without the targeted impairment (PPV and NPV ) can be different from the estimates
of the standardized predictive values for the two populations (SPPV and SNPV ). These
differences are more substantial when prevalence deviates more strongly from .5.

5.3. Post-test probabilities.

Posttest probabilities (Sonis 1999) may seem quite different from predictive values, but they
are not. The posttest probability is equal to the positive predictive value when the pretest
probability is set to the sample prevalence, while the standardized positive predictive value
is equal to the posttest probability when the pretest probability is set to .5. Post-test prob-
abilities are most versatile, as they can be calculated for every possible value of prevalence.
However, it is difficult to choose a ‘correct’ prevalence for a patient for whom the presence of
the targeted impairment is unknown, and an assumed pre-test probability of 0.5 is often the
most reasonable. (It should be noted that Sonis (1999) discusses a serious disease with low
prevalence for which a relatively harmless and effective cure exists. It should be clear that in
such a case a decision to apply the cure is easily made, even when the positive test outcome
has low probability and the true presence of the disease is most uncertain.)

5.4. Uncertain test scores.

This is defined as a range of test scores with about equal densities in the two distributions of
patients with and without the targeted disease. Standardized predictive values are therefore
most suited to the determination of this range of uncertain test scores. How much uncertainty
can be allowed is open for discussion. This paper uses an SNPV and an SPPV < .667 (odds
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of NCI and CI two to one or less) to define test scores that are too uncertain for classification
concerning the presence of CI.

5.5. Test reliability and smoothing.

Even if all circumstances remain the same, we cannot expect to find the same test score for a
patient when the same test is taken a second time. Due to random influences, a second test
score will be slightly lower or higher. Reliable estimates of these predictive probabilities are
consequently needed, and these should be corrected for this randomness to a certain degree. In
test theory, this random effect is estimated with the Standard Error of Measurement (SEM),
which depends directly on the reliability of the test: SEM = s

√
1− r, where s is the standard

deviation of the test scores and r the estimated reliability of the test (Crocker and Algina 1986;
Harvill 1991). The true score of an individual patient lies with some probability (roughly 68%)
within a range of ±1 SEM around the observed test score. This provides information about
the range of test scores where the true score of the patient can be expected. The average
standardized predictive values of a fixed number of consecutive test scores (in this case 5) are
calculated, where each subset of test scores is modified by a forward shift, excluding the first
test score and including the next test score. Such a moving average smooths the predictive
values, stabilizes the estimates across different samples, and mitigates peculiarities in the
sample. For the determination of thresholds, standardized predictive values are calculated for
the range of ±1 SEM around each test score to obtain more stable predictive values.

6. Determination of an uncertain interval

The UncertainInterval package has been developed over several years (Landsheer 2016, 2018).
Central to all functions developed for the determination of the uncertain interval is that in
this interval the density is about equal for patients with and without the targeted disorder.
The uncertain interval is located around the point of intersection of the two density distribu-
tions. Such an uncertain interval is related to the optimal dichotomous threshold where the
sum of the error probabilities (1− Sp + 1 − Se) are minimized, which is the same threshold
where the sum Se + Sp is maximized (Youden 1950).
The first developed function is ui.nonpar for the non-parametric determination of an uncer-
tain interval around the point of intersection that can be applied to continuous test scores. It
iteratively searches for an interval of test scores around the point of intersection where these
isolated test scores have a given value for both Se and Sp (the default value is .55). Simula-
tion results and an application to a clinical example are published in Landsheer (2016). The
clinical example concerns the prediction of the severity of prostate cancer and is applied to
data published by Hosmer and Lemeshow (2000). As Se and Sp have been developed as the
characteristics of dichotomization of the full range of observed test scores, the use of Se and
Sp as quality indices for limited ranges of test scores may be counter-intuitive. Commonly
used functions for the calculation of Se and Sp do so for the full range of observed test scores.
Therefore, the functions quality.threshold.uncertain and quality.threshold have been
created. The function quality.threshold.uncertain calculates quality indices for the range
of test scores that form the uncertain interval. When two thresholds are provided, the function
quality.threshold calculates the quality indices for the test scores outside the uncertain
interval, ignoring the test scores in the uncertain interval in between the two thresholds. The
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functions can also be used for the more usual calculation of quality indices of the test when
applying a single threshold. The function ui.binormal is used for the determination of an
uncertain interval when the two distributions of test scores are assumed to follow a bi-normal
distribution. Instead of a search routine, the function uses an optimization algorithm from
the nlopt library https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/: the se-
quential quadratic programming (SQP) algorithm for non-linearly constrained gradient-based
optimization (supporting both inequality and equality constraints), based on the implemen-
tation by Kraft (1988; 1994). In Landsheer (2018) simulation results are published, while
the capabilities of the trichotomization method are demonstrated on an empirical data set
published in Andrews and Herzberg (1985) and available in the R package ipred (Peters,
Hothorn, Ripley, Therneau, and Atkinson 2015). The data set concerns observations of 75
female Duchenne muscular dystrophy (DMD) carriers and 134 female DMD non-carriers. The
various methods are demonstrated for the serum creatine kinase (CK), marker for the deter-
mination of DMD carriers. The CK marker offers a concordance (AUC or C-statistic) of 0.87.
The CK-marker is not the best marker for this determination but enables the demonstration
of the ui.binormal method. Later, this function was generalized to cover a wider variety of
distributions different from the bi-normal distribution (function nl.opt.general).
For comparison, the TG-ROC method of Greiner (1995; 1996) and the Grey-zone method of
Coste et al. (2006; 2003) have been used in the two publications (Landsheer 2016, 2018). As
the software for these methods is not generally available, two functions (TG.ROC and greyzone)
have been added to the UncertainInterval package from version 0.5 onwards. These two meth-
ods are also trichotomization methods but differ from the UncertainInterval methods. Both
methods are based on dichotomous operation characteristics for all possible cutoff-scores of
the test. The resulting middle section of the trichotomization (called intermediate or grey-
zone) often overlaps the interval of uncertain test scores but is not necessarily related to the
optimal dichotomous cutoff score or to equality of densities and can have different properties.
These differences are discussed in Landsheer (2018).

As tests often have discrete scores of interval level, a function has been added for the explo-
ration of possible uncertain intervals of ordinal test results (ui.ordinal). This function can
be applied to small samples of tests with a limited number of ordinal outcomes but as such it
is intended for exploration. Preferably, the determination of cutoff scores intended for general
use should be based on large samples. When the number of discrete scores is small, Se and
Sp of a middle section can vary greatly and a specific value such as the default value of Se
and Sp of .55 may be hard to obtain. The ui.ordinal function therefore allows for multiple
criteria that can be used for the determination of an inconclusive middle section.
The ideas presented by Sonis (1999) and others (Brown and Reeves 2003; Gallagher 1998)
about interval likelihood ratios, showed that predictive values, standardized predictive values,
post-test probabilities, as well as interval likelihood ratios can be used in a straightforward
manner for the determination of the quality indices of intervals of test scores. The existence
of large clinical data sets such as the NACC data set enables the calculation of these indices
for small ranges of test scores, even when the interval is as small as a single test score. This
has resulted in the RPV function of the UncertainInterval package, which calculates predictive
values, standardized predictive values, interval likelihood ratios and posttest probabilities of
intervals of test scores or even the individual test scores of discrete ordinal tests.
This paper limits itself to the demonstration of the RPV function and several help-functions
that are part of the UncertainInterval package. For the explanation and demonstration of the

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
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other functions see (Landsheer 2016, 2018) and their supplemental files and the other vignette
in the UncertainInterval package.

6.1. Exploring the problem

The first step in the analysis of bi-distributed test scores is the plot of the distributions. First,
we select the first measurements and then plot these distributions. The UncertainInterval
package has two functions for the purpose: plotMD and barplotMD. Both can be used for
ordinal data, but plotMD is more useful when data are continuous. The following code loads
the package and the example data set and shows the head and the total number of observations
of the data set.

R> library(UncertainInterval)

R> packageVersion("UncertainInterval") # should be 0.6.0 or later

[1] '0.6.0'

R> data('synthdata_NACC')
R> head(synthdata_NACC)

ID center ref.1 MOCATOTS.1 vdate.1 ref.2 MOCATOTS.2 vdate.2

14 6411 AD 1 7 16981 NA NA NA

36 1079 H 1 21 17095 NA NA NA

51 4012 W 0 25 17323 NA NA NA

52 785 C NA 28 17415 NA NA NA

70 887 Y NA NA NA 1 22 16772

73 3292 P 1 2 16997 NA NA NA

R> nrow(synthdata_NACC)

[1] 6670

Next, we select the part of data with the first measurements. The gold standard is defined
by two variables (see paragraph 2.2). These two variables can result in an inconclusive gold
standard, which are excluded:

R> m1 = synthdata_NACC[!is.na(synthdata_NACC$MOCATOTS.1) &

R+ !is.na(synthdata_NACC$ref.1), ]

Next, check the data for possible missing values and plot the data when everything is ok:

R> addmargins(table(m1$ref.1, m1$MOCATOTS.1, useNA = 'always'))

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1 8 13 19 17 20 31 36 47 38 41 52 46 65

<NA> 0 0 0 0 0 0 0 0 0 0 0 0 0

Sum 8 13 19 17 20 31 36 47 38 41 52 46 65

13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 0 4 8 13 16 15 41 49 67 139 208 248

1 79 98 93 97 134 167 148 170 185 210 191 158 185

<NA> 0 0 0 0 0 0 0 0 0 0 0 0 0

Sum 79 98 97 105 147 183 163 211 234 277 330 366 433

26 27 28 29 30 <NA> Sum

0 308 414 394 313 199 0 2436

1 116 82 44 36 6 0 2632

<NA> 0 0 0 0 0 0 0

Sum 424 496 438 349 205 0 5068

R> barplotMD(m1$ref.1, m1$MOCATOTS.1)

0 2 4 6 8 11 14 17 20 23 26 29

Mixed Frequencies

0
10

0
20

0
30

0
40

0

0 Target Condition Absent
1 Target Condition Present

The bar plot of these realistically simulated data shows the observations of 2436 patients with
no cognitive impairment and 2632 patients with cognitive impairment.

It is easy to see that distinguishing patients with and without cognitive impairment based
on the MoCA test score is relatively easy at the low end of the test scores: at the low end
patients without cognitive impairment are hardly present. Distinction at the high end of
the test scores is more difficult, as both patients with and without cognitive impairment can
perform quite well on the test and obtain relatively high test scores.
As most functions in the UncertainInterval package assume higher scores for patients with
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the targeted condition, the data need to be negated. This is also the case for the quality
functions. When applying the commonly used cutoff score of 25, with test score 25 and lower
indicating the presence of cognitive impairment, the following results are obtained.

R> quality.threshold(m1$ref.1, -m1$MOCATOTS.1, threshold = -25)

$table

ref

y.hat 0 1 Sum

0 (test < threshold) 1628 284 1912

1 (test >= threshold) 808 2348 3156

Sum 2436 2632 5068

$cut

threshold

-25

$indices

Proportion.True CCR balance Sp

0.5193370 0.7845304 3.6410256 0.6683087

Se NPV PPV SNPV

0.8920973 0.8514644 0.7439797 0.8609880

SPPV LR- LR+ C

0.2710364 0.1614564 2.6895408 0.8866365

The negation of the test scores only influences the table, as the correct interpretation of the
table needs the reversal of the inequalities: 0 (test score > threshold of 25) and 1 (test score
<= 25). The concordance (or AUC) is .89. The Area under the Curve (AUC) is indicated as
concordance in the UncertainInterval package, as AUC sometimes leads to confusion about
which curve is meant. The correct name is Area under the Receiver Operating Characteristics
Curve or AUROCC. When every possible pair is formed with one observation from the sample
with the disease and one from the sample of patients without the disease, the AUROCC
statistic is also the concordance between test result and gold standard. The concordance is
the probability that the model correctly ranks all possible pairs of observations. The name
“concordance” or C-statistic for this statistic is therefore also applicable.
Although the choice of the creators of the MoCA for this cutoff score of 25 was based on
a balance between Se and Sp, this balance is not obtained in this clinical sample. The
specificity of .67 is quite low. The optimal Youden threshold is 23 with scores <= 23 indicating
Cognitive Impairment. This agrees with the estimated point of intersection (test scores <=
23.54 indicate CI equally well):

R> get.intersection(m1$ref.1, -m1$MOCATOTS.1)

[1] -23.53688

As the Youden threshold maximizes the sum of Se + Sp, the results are slightly better than
when using 25 as a threshold:
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R> quality.threshold(m1$ref.1, -m1$MOCATOTS.1, threshold = -23)

$table

ref

y.hat 0 1 Sum

0 (test < threshold) 2084 627 2711

1 (test >= threshold) 352 2005 2357

Sum 2436 2632 5068

$cut

threshold

-23

$indices

Proportion.True CCR balance Sp

0.5193370 0.8068272 4.1767109 0.8555008

Se NPV PPV SNPV

0.7617781 0.7687200 0.8506576 0.7821917

SPPV LR- LR+ C

0.1594426 0.2784590 5.2718508 0.8866365

Next, we explore the prevalence of the different centers:

R> t = addmargins(table(m1$ref.1, m1$center, useNA = 'always'))
R> t = rbind(t, t[2,]/(t[2,]+t[1,]))

R> to = t[,c(order(t[5,1:30]),31:32)]

R> rownames(to) = c('0', '1','<NA>','Sum', 'prev')
R> round(to, 3)

Q W AA Z O L I D

0 218.000 89.000 149.000 93.000 89.000 138.000 260.000 119.000

1 60.000 30.000 54.000 34.000 34.000 55.000 112.000 57.000

<NA> 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sum 278.000 119.000 203.000 127.000 123.000 193.000 372.000 176.000

prev 0.216 0.252 0.266 0.268 0.276 0.285 0.301 0.324

X A G AB M T J R V

0 114.000 75.000 169.00 55.000 108.000 81.000 90.000 41.000 31.000

1 56.000 42.000 108.00 39.000 84.000 74.000 87.000 46.000 36.000

<NA> 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000

Sum 170.000 117.000 277.00 94.000 192.000 155.000 177.000 87.000 67.000

prev 0.329 0.359 0.39 0.415 0.438 0.477 0.492 0.529 0.537

P N U AC F Y H C E

0 13.000 31.000 105.000 65.000 27.000 40.000 33.00 41.000 34.000

1 16.000 48.000 176.000 123.000 65.000 116.000 99.00 135.000 122.000

<NA> 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000

Sum 29.000 79.000 281.000 188.000 92.000 156.000 132.00 176.000 156.000

prev 0.552 0.608 0.626 0.654 0.707 0.744 0.75 0.767 0.782
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K AD S B <NA> Sum

0 55.000 50.000 18.000 5.000 0 2436.000

1 284.000 288.000 114.000 38.000 0 2632.000

<NA> 0.000 0.000 0.000 0.000 0 0.000

Sum 339.000 338.000 132.000 43.000 0 5068.000

prev 0.838 0.852 0.864 0.884 NaN 0.519

R> center = colnames(to)[1:30] # sorted on sample prevalence

The overall prevalence for this sample is .52, but it varies for the individual centers in this
synthesized sample from .22 to .88. Now we obtain the test indices for the individual centers
when the optimal threshold is applied:

R> indm = matrix(NA, 30, 9)

R> yt = rep(NA, 30)

R> for (i in 1:30) {

R+ # i=1

R+ ref = m1[m1$center == center[i], ]$ref.1

R+ unique(ref)

R+ test = -m1[m1$center == center[i], ]$MOCATOTS.1

R+ N0 = length(test[ref == 0])

R+ N1 = length(test[ref == 1])

R+ indm[i, ] = c(N0, N1,

R+ quality.threshold(ref, test, threshold = -23,

R+ model = 'ordinal')$indices[c(1, 4:9)])

R+ }

R> colnames(indm) = c('n0', 'n1', 'prev', 'Sp', 'Se', 'NPV', 'PPV', 'SNPV', 'SPPV')
R> rownames(indm) = 1:30

R> round(indm, 3)

n0 n1 prev Sp Se NPV PPV SNPV SPPV

1 218 60 0.216 0.899 0.967 0.990 0.725 0.964 0.095

2 89 30 0.252 0.798 0.500 0.826 0.455 0.615 0.288

3 149 54 0.266 0.852 0.889 0.955 0.686 0.885 0.142

4 93 34 0.268 0.849 0.794 0.919 0.659 0.805 0.159

5 89 34 0.276 0.910 0.824 0.931 0.778 0.838 0.098

6 138 55 0.285 0.964 0.655 0.875 0.878 0.736 0.052

7 260 112 0.301 0.888 0.759 0.895 0.746 0.787 0.128

8 119 57 0.324 0.706 0.860 0.913 0.583 0.834 0.255

9 114 56 0.329 0.868 0.768 0.884 0.741 0.789 0.146

10 75 42 0.359 0.867 0.357 0.707 0.600 0.574 0.272

11 169 108 0.390 0.734 0.741 0.816 0.640 0.739 0.264

12 55 39 0.415 1.000 0.385 0.696 1.000 0.619 0.000

13 108 84 0.438 0.759 0.714 0.774 0.698 0.727 0.252

14 81 74 0.477 0.741 0.865 0.857 0.753 0.846 0.231

15 90 87 0.492 0.900 0.805 0.827 0.886 0.822 0.111

16 41 46 0.529 1.000 0.652 0.719 1.000 0.742 0.000
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17 31 36 0.537 0.903 0.500 0.609 0.857 0.644 0.162

18 13 16 0.552 0.538 0.938 0.875 0.714 0.896 0.330

19 31 48 0.608 0.806 0.771 0.694 0.860 0.779 0.201

20 105 176 0.626 0.781 0.835 0.739 0.865 0.826 0.208

21 65 123 0.654 0.877 0.829 0.731 0.927 0.837 0.129

22 27 65 0.707 0.778 0.769 0.583 0.893 0.771 0.224

23 40 116 0.744 0.925 0.767 0.578 0.967 0.799 0.089

24 33 99 0.750 0.909 0.747 0.545 0.961 0.783 0.108

25 41 135 0.767 0.976 0.593 0.421 0.988 0.705 0.040

26 34 122 0.782 0.824 0.910 0.718 0.949 0.901 0.162

27 55 284 0.838 0.909 0.761 0.424 0.977 0.792 0.107

28 50 288 0.852 1.000 0.851 0.538 1.000 0.870 0.000

29 18 114 0.864 0.833 0.693 0.300 0.963 0.731 0.194

30 5 38 0.884 1.000 0.500 0.208 1.000 0.667 0.000

The centers are sorted on the prevalence of CI found in their data. The following matrix
shows the correlations between prevalence and the various quality indices:

R> round(cor(indm[,'prev'], indm[,c('NPV', 'PPV', 'Sp', 'Se', 'SNPV', 'SPPV')]), 2)

NPV PPV Sp Se SNPV SPPV

[1,] -0.87 0.77 0.19 -0.01 0 -0.26

The correlations between prevalence and Sp and Se are low. As expected, the correlations
between prevalence and NPV and PPV are considerable (-.87 and .77), while the correlations
with their standardized version SNPV and SPPV are about as low as the correlations with
Sp and Se.

The MoCA has inadequate test accuracy indices (Se and Sp) for some of the centers. The
following command line shows the line numbers in table indm:

R> which(indm[,'Se'] < .7)

2 6 10 12 16 17 25 29 30

2 6 10 12 16 17 25 29 30

R> which(indm[,'Sp'] < .7)

18

18

It is noteworthy that low sensitivity is found both for centers with low prevalence and for
centers with high prevalence of CI. The low Specificity results occur for an center with a
prevalence of .552. Clearly, the MoCA does not function equally well for all centers and this
should receive more attention (it should be noted that similar results are also obtained for
the real data).
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Dependent on prevalence, the percentages of correctly classified patients can be quite low.
When a lower limit of .8 is used (4 out of 5 patients classified correctly), mainly centers with
low prevalence show sufficient values for NPV , while mainly centers with high prevalence
show sufficient values for PPV .

R> which(indm[,'NPV'] >= .8)

1 2 3 4 5 6 7 8 9 11 14 15 18

1 2 3 4 5 6 7 8 9 11 14 15 18

R> which(indm[,'PPV'] >= .8)

6 12 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30

6 12 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30

R> which(indm[,'PPV'] >= .8 & indm[,'NPV'] >= .8)

6 15

6 15

Only for 2 centers, both the value for NPV and PPV are >= .8.

6.2. Determination of an uncertain interval

As explained earlier, we first need the test reliability to enable smoothing of the distributions
and obtaining more stable estimates. The time ddiff between measurements varies widely.
The reliability is estimated with the ICC function of the psych package.

R> ddiff = (m1$vdate.2 - m1$vdate.1)

R> summary(ddiff)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
62.0 363.0 385.0 423.3 455.0 1063.0 3192

R> library(psych)

R> ICC(na.omit(cbind(m1$MOCATOTS.1, m1$MOCATOTS.2)))

Registered S3 methods overwritten by 'lme4':
method from

cooks.distance.influence.merMod car

influence.merMod car

dfbeta.influence.merMod car

dfbetas.influence.merMod car
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Call: ICC(x = na.omit(cbind(m1$MOCATOTS.1, m1$MOCATOTS.2)))

Intraclass correlation coefficients

type ICC F df1 df2 p lower bound upper bound

Single_raters_absolute ICC1 0.86 14 1875 1876 0 0.85 0.87

Single_random_raters ICC2 0.86 14 1875 1875 0 0.84 0.88

Single_fixed_raters ICC3 0.87 14 1875 1875 0 0.86 0.88

Average_raters_absolute ICC1k 0.93 14 1875 1876 0 0.92 0.93

Average_random_raters ICC2k 0.93 14 1875 1875 0 0.91 0.94

Average_fixed_raters ICC3k 0.93 14 1875 1875 0 0.92 0.94

Number of subjects = 1876 Number of Judges = 2

Over all, ICC is .86 for the subjects that have two measurements. The intended distance
between the meausurements of the UDS is one year apart. When selecting the patients whose
second measurements are between 11 and 13 months apart (335 and 395 days apart), 917
observations remain:

R> timesel = (ddiff >= 335) & (ddiff <= 395)

R> ICC(na.omit(cbind(m1$MOCATOTS.1[timesel], m1$MOCATOTS.2[timesel])))

Call: ICC(x = na.omit(cbind(m1$MOCATOTS.1[timesel], m1$MOCATOTS.2[timesel])))

Intraclass correlation coefficients

type ICC F df1 df2 p lower bound

Single_raters_absolute ICC1 0.87 15 916 917 1.4e-287 0.86

Single_random_raters ICC2 0.87 15 916 916 8.2e-292 0.85

Single_fixed_raters ICC3 0.88 15 916 916 8.2e-292 0.86

Average_raters_absolute ICC1k 0.93 15 916 917 1.4e-287 0.92

Average_random_raters ICC2k 0.93 15 916 916 8.2e-292 0.92

Average_fixed_raters ICC3k 0.93 15 916 916 8.2e-292 0.92

upper bound

Single_raters_absolute 0.89

Single_random_raters 0.89

Single_fixed_raters 0.89

Average_raters_absolute 0.94

Average_random_raters 0.94

Average_fixed_raters 0.94

Number of subjects = 917 Number of Judges = 2

R> # ICC(na.omit(cbind(m1$MOCATOTS.1[timesel], m1$MOCATOTS.2[timesel])), lmer=FALSE)

The lower estimate (.86) is chosen as the reliability estimate. The RPV function calculates
predictive values, interval likelihood ratios and post-test probabilities of individual test scores
for discrete ordinal tests. The function also trichotomizes the test results, with an uncertain
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interval where the test scores do not allow for an adequate distinction between the two groups
of patients. To reduce random effects, the standardized predictive values are calculated for a
range of scores around the obtained score. As the default calculated range of scores is uneven,
the function returns an error and proposes suitable values for the parameter roll.length

that determines the ranges of test scores. In the following command, roll.length is set to
5.

R> RPV(m1$ref.1, m1$MOCATOTS.1, reliability = .86, roll.length = 5)

$parameters

pretest.prob sample.prevalence reliability SEM

0.52 0.52 0.86 2.31

roll.length rel.conf.level decision.odds limit

5.00 0.61 2.00 0.67

$messages

[,1]

[1,] "Reliable Predictive Values for scores 0 1 29 30 have been extended."

[2,] "Decision use = standardized.pv."

$rel.pred.values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

rnpv 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.03

rppv 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99 0.97

rsnpv 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.03

rsppv 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99 0.97

rilr Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 88.16 33.32

rpt.odds Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 95.25 36.00

rpt.prob 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99 0.97

15 16 17 18 19 20 21 22 23 24 25 26

rnpv 0.05 0.07 0.08 0.11 0.14 0.18 0.26 0.36 0.43 0.53 0.64 0.73

rppv 0.95 0.93 0.92 0.89 0.86 0.82 0.74 0.64 0.57 0.47 0.36 0.27

rsnpv 0.05 0.07 0.09 0.12 0.15 0.19 0.27 0.37 0.45 0.55 0.66 0.74

rsppv 0.95 0.93 0.91 0.88 0.85 0.81 0.73 0.63 0.55 0.45 0.34 0.26

rilr 18.55 13.30 10.56 7.13 5.55 4.33 2.69 1.68 1.21 0.82 0.51 0.34

rpt.odds 20.04 14.37 11.41 7.70 6.00 4.68 2.91 1.81 1.31 0.89 0.56 0.37

rpt.prob 0.95 0.93 0.92 0.89 0.86 0.82 0.74 0.64 0.57 0.47 0.36 0.27

27 28 29 30

rnpv 0.78 0.85 0.85 0.85

rppv 0.22 0.15 0.15 0.15

rsnpv 0.80 0.86 0.86 0.86

rsppv 0.20 0.14 0.14 0.14

rilr 0.26 0.16 0.16 0.16

rpt.odds 0.28 0.17 0.17 0.17

rpt.prob 0.22 0.15 0.15 0.15

$thresholds.UI
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L U

22 25

$ranges

Negative Decisions Uncertain Positive Decisions

"26 to 30" "22 to 25" "0 to 21"

$results

Negative.Decisions Uncertain Positive.Decisions

n 1912 1406 1750

total.sample 37.73% 27.74% 34.53%

correct.decisions 85.15% <NA> 91.66%

true.neg.status 66.83% 27.18% 5.99%

true.pos.status 10.79% 28.27% 60.94%

realized.odds 5.73 1.12 10.99

The parameters of the analysis are presented in $parameters. The size of this range is set to
(approximate) the score ±1 SEM . The estimate of SEM is 2.305. The selected roll.length

= 5 sets the ranges of the test score ± 2 and the results are the moving averages of the test
scores ± 2. This covers a confidence level of 61.4% for the expected true test score. The
calculated results are the moving averages over these ranges. Applying the odds of a correct
classification as 2 against 1 means the lower limit of SNPV or SPPV is .667 and test
scores that offer either an SNPV or SPPV lower than .667 are considered as inconclusive or
uncertain.

Reliable standardized predictive values cannot be calculated for the most extreme values (test
scores 0, 1, 29 and 30) and are consequently extended from the nearest calculable value. This
is reported in $messages. The test scores at the extremes of the test results represent the
highest and lowest standardized predictive values. In practice, this extension should therefore
rarely pose a problem for the determination of the most uncertain test scores, as classification
errors are typically found around the Youden threshold (in this case 23) and not in the tails
of the distributions.
Various statistics are shown in $rel.pred.values. It shows the smoothed predictive val-
ues (rnpv and rppv), the density based standardized negative and positive predictive values
(rsnpv and rsppv), the interval likelihood ratios (rilnr), the posttest odds (rpt.odds) and
the posttest probabilities (rpt.prob). In this case, rpt.prob equals rppv as the prevalence
is kept equal to the sample prevalence.
The standardized negative and positive predictive values are used for the decision thresholds.
In this case, rpt.prob equals rppv as the prevalence is kept equal to the sample prevalence
as a default. The standardized predictive values are equal to the posttest probabilities when
prevalence is set to .5. The decision results are shown in $result. The determined uncertain
interval is 22 to 25, which contains 27.2% of patients with a true negative status and 28.3% of
the patients with a true positive status. The realized decision odds for the uncertain interval
are 1.124 which means that the ratio of the densities of patients with and without cognitive
impairment d1(x)/d0(x) is close to 1. The range 26-30 is selected for negative decisions which
results in 85.1% correct decisions and covers 66.8% of the patients with a true negative sta-
tus. The range 0-21 is selected for positive decisions. It has a percentage of 91.7 of correct
decisions and covers 60.9% patients with a true positive status.
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Although the uncertain interval contains 27.7% of the total sample, no less than 56% of all
errors are found here when the optimal threshold (23) would have been applied:

R> class23 = as.numeric(m1$MOCATOTS.1 <= 23)

R> all.err = m1$ref.1 != class23 # errors when using the optimal cut-point

R> sum(all.err[m1$MOCATOTS.1 >= 22 & m1$MOCATOTS.1 <= 25])/ sum(all.err)

[1] 0.5607763

The results of this trichotomization for the individual centers are:

R> indm2 = matrix(NA, 30, 9); i=1

R> for (i in 1:30) {

R+ ref = m1[m1$center == center[i], ]$ref.1

R+ test = m1[m1$center == center[i], ]$MOCATOTS.1 # reversed order

R+ # works only correctle with package version >= 0.6.0

R+ res = RPV(

R+ ref,

R+ test,

R+ pretest.prob = .53,

R+ reliability = .86,

R+ roll.length = 5,

R+ decision.odds = 2,

R+ preselected.thresholds = c(25, 22),

R+ use.perc = F

R+ )

R+ indm2[i, ] = c(t(res$res[3:5, ]))

R+ }

R> indm2=cbind(to['prev',1:30], indm2[,c(1,3,4,9,7,6)])

R> colnames(indm2) = c('prev', 'NPV', 'PPV', 'TNR', 'TPR', 'FNR', 'FPR')
R> # Please note: SPPV != Se / (Se + 1 - Sp) and SNPV != Sp / (Sp + 1 - Se)).

R> SNPV = indm2[,'TNR']/(indm2[,'TNR']+ indm2[,'FNR'])
R> SPPV = indm2[,'TPR']/(indm2[,'TPR']+ indm2[,'FPR'])
R> rownames(indm2)= 1:30

R> indm2 = cbind(indm2, SNPV, SPPV)

R> round(indm2, 3)

prev NPV PPV TNR TPR FNR FPR SNPV SPPV

1 0.216 1.000 0.833 0.711 0.750 0.000 0.041 1.000 0.948

2 0.252 0.919 0.478 0.640 0.367 0.167 0.135 0.794 0.731

3 0.266 0.940 0.860 0.631 0.685 0.111 0.040 0.850 0.944

4 0.268 0.969 0.893 0.667 0.735 0.059 0.032 0.919 0.958

5 0.276 0.950 0.958 0.640 0.676 0.088 0.011 0.879 0.984

6 0.285 0.927 0.875 0.826 0.382 0.164 0.022 0.835 0.946

7 0.301 0.892 0.855 0.638 0.580 0.179 0.042 0.781 0.932

8 0.324 0.985 0.725 0.538 0.649 0.018 0.118 0.968 0.847
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9 0.329 0.940 0.943 0.684 0.589 0.089 0.018 0.885 0.971

10 0.359 0.844 0.750 0.720 0.286 0.238 0.053 0.751 0.843

11 0.390 0.869 0.739 0.550 0.630 0.130 0.142 0.809 0.816

12 0.415 0.750 1.000 0.982 0.256 0.462 0.000 0.680 1.000

13 0.438 0.909 0.727 0.463 0.571 0.060 0.167 0.886 0.774

14 0.477 0.887 0.957 0.580 0.608 0.081 0.025 0.877 0.961

15 0.492 0.833 0.934 0.556 0.655 0.115 0.044 0.829 0.936

16 0.529 0.800 1.000 0.878 0.522 0.196 0.000 0.818 1.000

17 0.537 0.743 1.000 0.839 0.361 0.250 0.000 0.770 1.000

18 0.552 1.000 0.789 0.308 0.938 0.000 0.308 1.000 0.753

19 0.608 0.792 0.933 0.613 0.583 0.104 0.065 0.855 0.900

20 0.626 0.847 0.917 0.686 0.750 0.074 0.114 0.903 0.868

21 0.654 0.930 0.958 0.615 0.748 0.024 0.062 0.962 0.924

22 0.707 0.808 1.000 0.778 0.631 0.077 0.000 0.910 1.000

23 0.744 0.756 0.971 0.775 0.586 0.086 0.050 0.900 0.921

24 0.750 0.769 0.981 0.606 0.515 0.061 0.030 0.909 0.944

25 0.767 0.547 0.984 0.854 0.459 0.215 0.024 0.799 0.950

26 0.782 1.000 0.968 0.735 0.738 0.000 0.088 1.000 0.893

27 0.838 0.595 0.982 0.909 0.581 0.120 0.055 0.884 0.914

28 0.852 0.611 1.000 0.880 0.729 0.097 0.000 0.901 1.000

29 0.864 0.316 0.984 0.333 0.535 0.114 0.056 0.745 0.906

30 0.884 0.400 1.000 0.800 0.395 0.158 0.000 0.835 1.000

In this case, it is possible to obtain the same values for Sp = TNR using a single threshold:
quality.threshold(ref, -test, -25)$indices[‘Sp’] and for Se = TPR using quality.threshold(ref,
-test, -21)$indices[‘Se’].

The correlations between the predictive values and prevalence are reduced but still consider-
able:

R> round(cor(indm2[,'prev'],
R+ indm2[,c('NPV', 'PPV', 'TNR', 'TPR', 'SNPV', 'SPPV')]), 2)

NPV PPV TNR TPR SNPV SPPV

[1,] -0.72 0.59 0.16 0.04 0.08 0.2

However, there is an increase in the number of centers with sufficient classification accuracy:

R> which(indm2[,'NPV'] >= .8)

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 20 21 22 26

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 20 21 22 26

R> which(indm2[,'PPV'] >= .8)

1 3 4 5 6 7 9 12 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30

1 3 4 5 6 7 9 12 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30
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R> which(indm2[,'PPV'] >= .8 & indm2[,'NPV'] >= .8)

1 3 4 5 6 7 9 14 15 16 20 21 22 26

1 3 4 5 6 7 9 14 15 16 20 21 22 26

There are now 20 centers with NPV >= .8 and 24 centers with PPV >= .8. For both PPV
and NPV , 14 centers can use the MoCA in this manner to classify both patients with and
without CI correctly in at least 4 out of 5 cases.

The results for TNR = Sp and TPR = Se are lower compared to the table based on the
optimal dichotomization. The indices TNR = Sp, TPR = Se, FNR and FPR are single
cut-point indices. The application of the single cut-point indices Se and Sp is problematic in
the context of trichotomization and underestimate the percentages of patients without and
with the targeted disease that are identified correctly. The reason for this is that all test
scores in the uncertain interval are treated as errors in stead of more cautious classifications.
When these test scores are considered as uncertain, another possible line of action can be
chosen. A more cautious line of action reduces over-treatment and treatment errors.

The indices Se and Sp are meant for a dichotomous classification and are cumbersome to
apply when using a three-way classification. A possible alternative is ignoring the uncertain
test scores (function quality.uncertain) for the calculation of the test indices.

7. Alternative software

Trichotomization software is scarce. The earlier developed software for the Two-Graphs re-
ceiver Operating Characteristics (Greiner 1995, 1996) is no longer available. A non-parametric
implementation of function TGROC is available in package (DiagnosisMed, which is under de-
velopment (Brasil 2018). For the Grey zone method (Coste et al. 2006; Coste and Pouchot
2003) software is not available. Both a TG-ROC and a greyzone function have been made part
of the UncertainInterval package.
I also like to point to an alternative R package for trichotomization: ThreshholdROC (Perez-
Jaume, Skaltsa, Pallarès, and Carrasco 2017). This method is most suitable when there are
three distinguishable underlying states and is especially suitable for tests that allow for a finer
distinction. When underlying states are less easy to distinguish in three different states, a
middle range of test scores is better considered as uncertain and the package UncertainInterval
may be a better choice.

8. Discussion

The UncertainInterval package allows for the identification of a middle range of uncertain test
scores. The main advantage is that it enables identification of test scores that have about equal
likelihood of identifying a patient with or without the targeted impairment. The application
on the MoCA shows that a large number of classification errors are prevented when considering
these test scores as uncertain. Choosing a more cautious line of action such as awaiting further
developments while applying active surveillance or watchful waiting is considered best practice
for a disease such as prostate cancer (Bangma et al. 2013). Knowing which range of test scores
are inconclusive concerning the targeted disease may help in considering benefits and costs
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both for patients with and without the targeted disease.
This paper also shows a secondary benefit of considering a range of test scores as uncertain:
it allows the application of trichotomized cutoff scores that can be applied in a wider range
of clinical settings as they offer sufficient classification accuracy in more settings that vary
in the mix of patients with and without the targeted disease. While this does not solve the
problem of prevalence, it does alleviate it.
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