
Package ‘DSAIRM’
March 20, 2021

Type Package

Title Dynamical Systems Approach to Immune Response Modeling

Description Simulation models (apps) of various within-host immune response scenarios.
The purpose of the package is to help individuals learn
about within-
host infection and immune response modeling from a dynamical systems perspective.
All apps include explanations of the underlying models and instruc-
tions on what to do with the models.
The development of this package was partially supported by NIH grant U19AI117891.

Version 0.8.7

Date 2021-03-17

Maintainer Andreas Handel <ahandel@uga.edu>

License GPL-3

Encoding UTF-8

LazyData TRUE

Imports adaptivetau, boot, deSolve, dplyr, ggplot2, gridExtra, lhs,
nloptr, plotly, rlang, stats, utils, XML

Depends R (>= 4.0), shiny (>= 1.0)

Suggests covr, devtools, knitr, pkgdown, rmarkdown, roxygen2, testthat

RoxygenNote 7.1.1

VignetteBuilder knitr

URL https://ahgroup.github.io/DSAIRM/,

https://github.com/ahgroup/DSAIRM/

BugReports https://github.com/ahgroup/DSAIRM/issues

NeedsCompilation no

Author Andreas Handel [aut, cre] (<https://orcid.org/0000-0002-4622-1146>),
Yang Ge [ctb],
Spencer Hall [ctb],
Sina Solaimanpour [ctb],
Alexis Vittengl [ctb],
Henok Woldu [ctb]

1

https://ahgroup.github.io/DSAIRM/
https://github.com/ahgroup/DSAIRM/
https://github.com/ahgroup/DSAIRM/issues

2 DSAIRM

Repository CRAN

Date/Publication 2021-03-20 20:40:35 UTC

R topics documented:
DSAIRM . 2
dsairmmenu . 3
generate_documentation . 4
generate_equations . 4
generate_fctcall . 5
generate_ggplot . 6
generate_plotly . 7
generate_shinyinput . 8
generate_text . 9
hayden96flu . 10
run_model . 11
simulate_basicbacteria_discrete . 12
simulate_basicbacteria_modelexploration . 13
simulate_basicbacteria_ode . 15
simulate_basicvirus_fit . 17
simulate_basicvirus_modelexploration . 19
simulate_basicvirus_ode . 21
simulate_basicvirus_stochastic . 23
simulate_confint_fit . 24
simulate_drugresistance_stochastic . 26
simulate_fludrug_fit . 27
simulate_modelcomparison_fit . 29
simulate_modelvariants_ode . 32
simulate_pkpdmodel_ode . 34
simulate_usanalysis . 37
simulate_virusandir_ode . 39
simulate_virusandtx_ode . 41

Index 44

DSAIRM DSAIRM: A package to learn about Dynamical Systems Approaches
to Immune Response Modeling

Description

The DSAIRM package provides a number of Shiny apps that simulate various within-host infection
and immune response dynamics models. By manipulating the models and working through the
instructions provided within the Shiny UI, you can learn about some important concepts in immune
response modeling. You will also learn how models can be used to study such concepts.

dsairmmenu 3

Package Structure

The package is structured in a modular way. Each Shiny app calls an underlying function (which in
turn might call other functions). The structure of the package allows you to interact with the models
in 3 ways:

1. Start the main menu of the package by calling dsairmmenu(). Pick a Shiny app corresponding to
a model/topic, explore it through the corresponding Shiny UI. The UI contains information about
the model and a list of tasks to try. This is the main intended use of this package.

2. Call each simulator function directly from the R console, without going through the Shiny
app. Each model simulator function is called simulate_XXX and is documented. See the ’Further
Information’ tab for a given Shiny app to find the names of the different simulation functions.

Calling the functions directly allows you more flexibility. For instance you could write a few lines
of extra R code to loop over some model parameter, instead of the manual setting through the sliders
in the Shiny app. This gives you more options, but requires being able to write a little bit of R code.

3. Find the code for a simulator function you are interested in and modify it to your needs. This
provides the most flexibility in what you can do with this package, and you can end up with any
model you need, but for that you need to know or learn some more R coding. To make it easy to get
the source code for the simulator functions, they can be downloaded as a zip folder from the main
menu.

dsairmmenu The main menu for the DSAIRM package

Description

This function opens a Shiny app with a menu that will allow the user to run the different simulations.

Usage

dsairmmenu()

Details

Run this function with no arguments to start the main menu (a Shiny app) for DSAIRM.

Author(s)

Andreas Handel

Examples

Not run: dsairmmenu()

4 generate_equations

generate_documentation

A helper function which processes and displays the documentation
part for each app

Description

This function take the documentation provided as html file and extracts sections to generate the tabs
with content for each Shiny app. This is a helper function and only useful for this package.

Usage

generate_documentation(docfilename)

Arguments

docfilename full path and name to html file containing the documentation

Details

This function is called by the Shiny UIs to populate the documentation and information tabs.

Value

tablist A list of tabs for display in a Shiny UI.

Author(s)

Andreas Handel

generate_equations Turn a model into a set of differential equations displayed as La-
TeX/HTML object

Description

The model needs to adhere to the structure specified by the modelbuilder package models built
using the modelbuilder package automatically have the right structure a user can also build a model
list structure themselves following the specifications if the user provides a file name, this file needs
to contain an object called ’model’ and contain a valid modelbuilder model structure

Usage

generate_equations(mbmodel)

generate_fctcall 5

Arguments

mbmodel modelbuilder model structure, either as list object or file name

Details

This function takes as input a model and produces output that displays ODE equations

Value

The function returns equations as an html object

Author(s)

Andreas Handel

generate_fctcall A helper function that produces a call to a simulator function for spe-
cific settings

Description

This function takes a modelsettings structure and uses that information to create an unevaluated
function call that runs the simulator function with the specified settings

Usage

generate_fctcall(modelsettings)

Arguments

modelsettings a list with model settings. Required list elements are:
List elements with names and values for all inputs expected by simulation func-
tion.
modelsettings$simfunction - name of simulation function in variable

Details

This function produces a function call for specific settings.

Value

A string containing an unevaluated function call with the specified settings

6 generate_ggplot

generate_ggplot A helper function that takes simulation results and produces ggplot
plots

Description

This function generates plots to be displayed in the Shiny UI. This is a helper function. This function
processes results returned from the simulation, supplied as a list.

Usage

generate_ggplot(res)

Arguments

res A list structure containing all simulation results that are to be plotted. The length
of the main list indicates the number of separate plots to make. Each list entry
is itself a list, and corresponds to one plot and needs to contain the following
information/elements:
1. A data frame list element called "dat" or "ts". If the data frame is "ts" it is as-
sumed to be a time series and by default a line plot will be produced and labeled
Time/Numbers. For plotting, the data needs to be in a format with one column
called xvals, one column yvals, one column called varnames that contains names
for different variables. Varnames needs to be a factor variable or will be con-
verted to one. If a column ’varnames’ exist, it is assumed the data is in the right
format. Otherwise it will be transformed. An optional column called IDvar can
be provided for further grouping (i.e. multiple lines for stochastic simulations).
If plottype is ’mixedplot’ an additional column called ’style’ indicating line or
point plot for each variable is needed.
2. Meta-data for the plot, provided in the following variables:
optional: plottype - One of "Lineplot" (default if nothing is provided),"Scatterplot","Boxplot",
"Mixedplot".
optional: xlab, ylab - Strings to label axes.
optional: xscale, yscale - Scaling of axes, valid ggplot2 expression, e.g. "iden-
tity" or "log10".
optional: xmin, xmax, ymin, ymax - Manual min and max for axes.
optional: makelegend - TRUE/FALSE, add legend to plot. Assume true if not
provided.
optional: legendtitle - Legend title, if NULL/not supplied, default is used
optional: legendlocation - if "left" is specified, top left. Otherwise top.
optional: linesize - Width of line, numeric, i.e. 1.5, 2, etc. set to 1.5 if not sup-
plied.
optional: pallette - overwrite plot colors by providing a vector of color names or
hex numbers to be used for the plot.
optional: title - A title for each plot.
optional: for multiple plots, specify res[[1]]$ncols to define number of columns

generate_plotly 7

Details

This function can be called to produce plots, i.e. those displayed for each app. The input needed by
this function is produced by either calling the run_model() function (as done when going through
the UI) or manually transforming the output from a simulate_ function into the correct list structure
explained below.

Value

A ggplot plot structure for display in a Shiny UI.

Author(s)

Andreas Handel

generate_plotly A helper function that takes simulation results and produces plotly
plots

Description

This function generates plots to be displayed in the Shiny UI. This is a helper function. This function
processes results returned from the simulation, supplied as a list.

Usage

generate_plotly(res)

Arguments

res A list structure containing all simulation results that are to be plotted. The length
of the main list indicates the number of separate plots to make. Each list entry
is itself a list, and corresponds to one plot and needs to contain the following
information/elements:
1. A data frame list element called "dat" or "ts". If the data frame is "ts" it is as-
sumed to be a time series and by default a line plot will be produced and labeled
Time/Numbers. For plotting, the data needs to be in a format with one column
called xvals, one column yvals, one column called varnames that contains names
for different variables. Varnames needs to be a factor variable or will be con-
verted to one. If a column ’varnames’ exist, it is assumed the data is in the right
format. Otherwise it will be transformed. An optional column called IDvar can
be provided for further grouping (i.e. multiple lines for stochastic simulations).
If plottype is ’mixedplot’ an additional column called ’style’ indicating line or
point plot for each variable is needed.
2. Meta-data for the plot, provided in the following variables:
optional: plottype - One of "Lineplot" (default is nothing is provided),"Scatterplot","Boxplot",
"Mixedplot".
optional: xlab, ylab - Strings to label axes.

8 generate_shinyinput

optional: xscale, yscale - Scaling of axes, valid ggplot2 expression, e.g. "iden-
tity" or "log10".
optional: xmin, xmax, ymin, ymax - Manual min and max for axes.
optional: makelegend - TRUE/FALSE, add legend to plot. Assume true if not
provided.
optional: legendtitle - Legend title, if NULL/not supplied, default is used
optional: legendlocation - if "left" is specified, top left. Otherwise top right.
optional: linesize - Width of line, numeric, i.e. 1.5, 2, etc. set to 1.5 if not sup-
plied.
optional: title - A title for each plot.
optional: for multiple plots, specify res[[1]]$ncols to define number of columns

Details

This function can be called to produce plots, i.e. those displayed for each app. The input needed by
this function is produced by either calling the run_model() function (as done when going through
the UI) or manually transforming the output from a simulate_ function into the correct list structure
explained below.

Value

A plotly plot structure for display in a Shiny UI.

Author(s)

Yang Ge, Andreas Handel

generate_shinyinput A helper function that takes a model and generates shiny UI elements

Description

This function generates shiny UI inputs for a supplied model. This is a helper function called by
the shiny app.

Usage

generate_shinyinput(
use_mbmodel = FALSE,
mbmodel = NULL,
use_doc = FALSE,
model_file = NULL,
model_function = NULL,
otherinputs = NULL,
packagename = NULL

)

generate_text 9

Arguments

use_mbmodel TRUE/FALSE if mbmodel list should be used to generate UI

mbmodel a valid mbmodel object

use_doc TRUE/FALSE if doc of a model file should be parsed to make UI

model_file name/path to function file for parsing doc

model_function name of function who’s formals are parsed to make UI

otherinputs a text string that specifies a list of other shiny inputs to include in the UI

packagename name of package using this function

Details

This function is called by the Shiny app to produce the Shiny input UI elements. It produces UI
by 3 different ways. 1. If use_mbmodel is TRUE, an mbmodel list structure, which needs to be
provided, is used 2. If use_mbmodel is FALSE and use_doc is TRUE, the documentation header of
the function is used. For that approach, model_file needs to contain the name/path to the R script for
the function The doc needs to have a specific format for this. 3. If both use_mbmodel and use_doc
are FALSE, the function formals are parsed and used as UI. For that approach, model_function
needs to specify the name of the model model_function is assumed to be the name of a function. The
formals of the function will be parsed to create UI elements. Non-numeric arguments of functions
are removed and need to be included in the otherinputs argument.

Value

A renderUI object that can be added to the shiny output object for display in a Shiny UI

generate_text A helper function that takes result from the simulators and produces
text output

Description

This function generates text to be displayed in the Shiny UI. This is a helper function. This function
processes results returned from the simulation, supplied as a list.

Usage

generate_text(res)

Arguments

res A list structure containing all simulation results that are to be processed. This
function is meant to be used together with generate_plots() and requires similar
input information. See the generate_plots() function for most details. Specific
entries for this function are ’maketext’, ’showtext’ and ’finaltext’. If ’maketext’
is set to TRUE (or not provided) the function processes the data corresponding to

10 hayden96flu

each plot and reports min/max/final values (lineplots) or correlation coefficient
(scatterplot) If ’maketext’ is FALSE, no text based on the data is generated. If
the entries ’showtext’ or ’finaltext’ are present, their values will be returned for
each plot or for all together. The overall message of finaltext should be in the
1st plot.

Details

This function is called by the Shiny server to produce output returned to the Shiny UI.

Value

HTML formatted text for display in a Shiny UI.

Author(s)

Andreas Handel

Andreas Handel

hayden96flu Influenza virus load data

Description

Daily average virus load of volunteers infected with influenza.

Usage

data(hayden96flu)

Format

A data frame with these variables:

HoursPI Hours post infection - measurements were taken daily.

txtime Hours post infection when treatment started. The value of 29 is the average of the 2 reported
early treatment times. A value of 200, which is later than the last recorded virus load, means
no treatment.

LogVirusLoad Average virus load for volunteers in a given treatment condition, in log10 units.

LOD Limit of detection for virus load, in log10 units.

Details

Data is from Hayden et al 1996 JAMA: doi:10.1001/jama.1996.03530280047035

Specifically, data was extracted from Figure 2. See this article and citations therein for more details
on the data.

run_model 11

run_model A function that runs an app for specific settings and processes results
for plot and text generation

Description

This function runs a model based on information provided in the modelsettings list passed into it.

Usage

run_model(modelsettings)

Arguments

modelsettings a list with model settings. Required list elements are:
modelsettings$simfunction - name of simulation function(s) as string.
modelsettings$is_mbmodel - indicate of simulation function has mbmodel struc-
ture modelsettings$modeltype - specify what kind of model should be run. Cur-
rently one of: _ode_, _discrete_, _stochastic_, _usanalysis_, _modelexploration_,
fit.
For more than one model type, place _and_ between them.
modelsettings$plottype - ’Boxplot’ or ’Scatterplot’ , required for US app
Optinal list elements are:
List elements with names and values for inputs expected by simulation function.
If not provided, defaults of simulator function are used.
modelsettings$plotscale - indicate which axis should be on a log scale (x, y or
both). If not provided or set to ”, no log scales are used.
modelsettings$nplots - indicate number of plots that should be produced (num-
ber of top list elements in result). If not provided, a single plot is assumed.
modelsettings$nreps - required for stochastic models to indicate numer of repeat
simulations. If not provided, a single run will be done.

Details

This function runs a model for specific settings.

Value

A vectored list named "result" with each main list element containing the simulation results in a
dataframe called dat and associated metadata required for generate_plot and generate_text func-
tions. Most often there is only one main list entry (result[[1]]) for a single plot/text.

12 simulate_basicbacteria_discrete

simulate_basicbacteria_discrete

Basic Bacteria model - discrete

Description

A basic bacteria infection model with 2 compartments, implemented as discrete time simulation.
The model tracks bacteria and an immune response dynamics. The processes modeled are bacteria
growth, death and killing by the immune response, and immune response activation and decay.

Usage

simulate_basicbacteria_discrete(
B = 10,
I = 1,
g = 1,
Bmax = 1e+06,
dB = 0.1,
k = 1e-07,
r = 0.001,
dI = 1,
tstart = 0,
tfinal = 30,
dt = 0.01

)

Arguments

B : starting value for bacteria : numeric

I : starting value for immune response : numeric

g : maximum rate of bacteria growth : numeric

Bmax : bacteria carrying capacity : numeric

dB : bacteria death rate : numeric

k : rate of bacteria killing by immune reesponse : numeric

r : immune response growth rate : numeric

dI : immune response decay rate : numeric

tstart : start time of simulation : numeric

tfinal : final time of simulation : numeric

dt : time step : numeric

simulate_basicbacteria_modelexploration 13

Details

The model includes bacteria and an immune response. The processes are bacteria growth, death and
killing by the immune response, and immune response activation and decay. This is a predator-prey
type model. The model is implemented as a set of discrete-time, deterministic equations, coded
as a for-loop. This code is part of the DSAIRM R package. For additional model details, see the
corresponding app in the DSAIRM package.

Value

The function returns the output as a list. The time-series from the simulation is returned as a
dataframe saved as list element ts. The ts dataframe has one column per compartment/variable.
The first column is time.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
have negative values for parameters), the code will likely abort with an error message.

Examples

To run the simulation with default parameters:
result <- simulate_basicbacteria_discrete()

simulate_basicbacteria_modelexploration

Simulation to illustrate parameter scan of the basic bacteria model #’

Description

This function simulates the simple bacteria model ODE for a range of parameters. The function
returns a data frame containing the parameter that has been varied and the outcomes (see details).

Usage

simulate_basicbacteria_modelexploration(
B = 100,
I = 10,
g = 2,
Bmax = 1e+05,
dB = 1,
k = 1e-04,
r = 1e-04,
dI = 2,
tstart = 0,
tfinal = 300,
dt = 0.1,
samples = 10,

14 simulate_basicbacteria_modelexploration

parmin = 2,
parmax = 10,
samplepar = "g",
pardist = "lin"

)

Arguments

B : Starting value for bacteria : numeric

I : Starting value for immune response : numeric

g : Maximum rate of bacteria growth : numeric

Bmax : Bacteria carrying capacity : numeric

dB : Bacteria death rate : numeric

k : Bacteria kill rate : numeric

r : Immune response growth rate : numeric

dI : Immune response decay rate : numeric

tstart : Start time of simulation : numeric

tfinal : Final time of simulation : numeric

dt : Times for which result is returned : numeric

samples : Number of values to run between pmin and pmax : numeric

parmin : Lower value for varied parameter : numeric

parmax : Upper value for varied parameter : numeric

samplepar : Name of parameter to be varied : character

pardist : spacing of parameter values, can be either ’lin’ or ’log’ : character

Details

##this code illustrates how to do analyze a simple model. A simple 2 compartment ODE model
(the simple bacteria model introduced in the app of that name) is simulated for different parameter
values. This function runs the simple bacterial infection model for a range of parameters. The user
can specify which parameter is sampled, and the simulation returns for each parameter sample the
peak and final value for B and I. Also returned is the varied parameter and an indicator if steady
state was reached.

Value

The function returns the output as a list, list element ’dat’ contains the data frame with results of
interest. The first column is called xvals and contains the values of the parameter that has been
varied as specified by ’samplepar’. The remaining columns contain peak and steady state values of
bacteria and immune response, Bpeak, Ipeak, Bsteady and Isteady. A final boolean variable ’steady’
is returned for each simulation. It is TRUE if the simulation reached steady state, otherwise FALSE.

Notes

The parameter dt only determines for which times the solution is returned, it is not the internal time
step. The latter is set automatically by the ODE solver.

simulate_basicbacteria_ode 15

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter values or fractions > 1), the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the shiny app documentation corresponding to this simulator function for more details on this
model.

Examples

To run the simulation with default parameters just call the function:
Not run: res <- simulate_basicbacteria_modelexploration()
To choose parameter values other than the standard one, specify them, like such:
res <- simulate_basicbacteria_modelexploration(samples=5, samplepar='dI', parmin=1, parmax=10)
You should then use the simulation result returned from the function, like this:
plot(res$dat[,"xvals"],res$data[,"Bpeak"],xlab='Parameter values',ylab='Peak Bacteria',type='l')

simulate_basicbacteria_ode

Basic Bacteria model - ODE

Description

A basic bacteria infection model with 2 compartments, implemented as set of ODEs. The model
tracks bacteria and an immune response dynamics. The processes modeled are bacteria growth,
death and killing by the immune response, and immune response activation and decay.

Usage

simulate_basicbacteria_ode(
B = 100,
I = 1,
g = 1,
Bmax = 1e+05,
dB = 0.5,
k = 1e-04,
r = 1e-04,
dI = 2,
tstart = 0,
tfinal = 100,
dt = 0.05

)

16 simulate_basicbacteria_ode

Arguments

B : starting value for bacteria : numeric

I : starting value for immune response : numeric

g : maximum rate of bacteria growth : numeric

Bmax : bacteria carrying capacity : numeric

dB : bacteria death rate : numeric

k : rate of bacteria killing by immune response : numeric

r : immune response growth rate : numeric

dI : immune response decay rate : numeric

tstart : start time of simulation : numeric

tfinal : final time of simulation : numeric

dt : times for which result is returned : numeric

Details

The model includes bacteria and an immune response. The processes are bacteria growth, death and
killing by the immune response, and immune response activation and decay. This is a predator-prey
type model. The model is implemented as a set of ordinary differential equations (ODE) using the
deSolve package. This code is part of the DSAIRM R package. For additional model details, see
the corresponding app in the DSAIRM package.

Value

The function returns the output as a list. The time-series from the simulation is returned as a
dataframe saved as list element ts. The ts dataframe has one column per compartment/variable.
The first column is time.

Notes

The parameter dt only determines the times the solution is returned and plotted, it is not the internal
time step for the differential equation solver. The latter is set automatically by the ODE solver.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
have negative values for parameters), the code will likely abort with an error message.

Examples

To run the simulation with default parameters:
result <- simulate_basicbacteria_ode()
To run the simulation with different parameter or starting values,
supply the ones you want to change.
all other parameters will be kept at their default values shown in the function call above
result <- simulate_basicbacteria_ode(B = 100, g = 0.5, dI = 2)

simulate_basicvirus_fit 17

simulate_basicvirus_fit

Fitting a simple viral infection models to influenza data

Description

This function runs a simulation of a compartment model using a set of ordinary differential equa-
tions. The model describes a simple viral infection system.

Usage

simulate_basicvirus_fit(
U = 1e+06,
I = 0,
V = 1,
n = 0,
dU = 0,
dI = 2,
g = 0,
p = 0.001,
plow = 1e-04,
phigh = 100,
psim = 10,
b = 0.1,
blow = 0.001,
bhigh = 10,
bsim = 1e-04,
dV = 1,
dVlow = 0.01,
dVhigh = 100,
dVsim = 5,
noise = 0,
iter = 1,
solvertype = 1,
usesimdata = 0

)

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

n : rate of uninfected cell production : numeric

dU : rate at which uninfected cells die : numeric

dI : rate at which infected cells die : numeric

18 simulate_basicvirus_fit

g : unit conversion factor : numeric

p : rate at which infected cells produce virus : numeric

plow : lower bound for p : numeric

phigh : upper bound for p : numeric

psim : rate at which infected cells produce virus for simulated data : numeric

b : rate at which virus infects cells : numeric

blow : lower bound for infection rate : numeric

bhigh : upper bound for infection rate : numeric

bsim : rate at which virus infects cells for simulated data : numeric

dV : rate at which infectious virus is cleared : numeric

dVlow : lower bound for virus clearance rate : numeric

dVhigh : upper bound for virus clearance rate : numeric

dVsim : rate at which infectious virus is cleared for simulated data : numeric

noise : noise to be added to simulated data : numeric

iter : max number of steps to be taken by optimizer : numeric

solvertype : the type of solver/optimizer to use (1-3) : numeric

usesimdata : set to 1 if simulated data should be fitted, 0 otherwise : numeric

Details

A simple compartmental ODE model mimicking acute viral infection is fitted to data. Data can
either be real or created by running the model with known parameters and using the simulated data
to determine if the model parameters can be identified. The fitting is done using solvers/optimizers
from the nloptr package (which is a wrapper for the nlopt library). The package provides access to
a large number of solvers. Here, we only implement 3 solvers, namely 1 = NLOPT_LN_COBYLA,
2 = NLOPT_LN_NELDERMEAD, 3 = NLOPT_LN_SBPLX For details on what those optimizers
are and how they work, see the nlopt/nloptr documentation.

Value

The function returns a list containing as elements the best fit time series data frame, the best fit
parameters, the data and the final SSR

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values, the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the Shiny app documentation corresponding to this function for more details on this model.

simulate_basicvirus_modelexploration 19

Examples

To run the code with default parameters just call the function:
Not run: result <- simulate_basicvirus_fit()
To apply different settings, provide them to the simulator function, like such:
result <- simulate_basicvirus_fit(iter = 5)

simulate_basicvirus_modelexploration

Simulation to illustrate parameter scan of the basic virus model #’

Description

This function simulates the basic virus model ODE for a range of parameters. The function returns
a data frame containing the parameter that has been varied and the outcomes (see details).

Usage

simulate_basicvirus_modelexploration(
U = 1e+05,
I = 0,
V = 1,
n = 10000,
dU = 0.1,
dI = 1,
dV = 2,
b = 2e-05,
p = 5,
g = 1,
tstart = 0,
tfinal = 100,
dt = 0.1,
samples = 10,
parmin = 1,
parmax = 10,
samplepar = "p",
pardist = "lin"

)

Arguments

U : Starting value for uninfected cells : numeric

I : Starting value for infected cells : numeric

V : Starting value for virus : numeric

n : Rate of new uninfected cell replenishment : numeric

dU : Rate at which uninfected cells die : numeric

20 simulate_basicvirus_modelexploration

dI : Rate at which infected cells die : numeric

dV : Rate at which virus is cleared : numeric

b : Rate at which virus infects cells : numeric

p : Rate at which infected cells produce virus : numeric

g : Possible conversion factor for virus units : numeric

tstart : Start time of simulation : numeric

tfinal : Final time of simulation : numeric

dt : Times for which result is returned : numeric

samples : Number of values to run between pmin and pmax : numeric

parmin : Lower value for varied parameter : numeric

parmax : Upper value for varied parameter : numeric

samplepar : Name of parameter to be varied : character

pardist : spacing of parameter values, can be either ’lin’ or ’log’ : character

Details

##this code illustrates how to do analyze a simple model. A simple 3 compartment ODE model (the
basic virus model introduced in the app of that name) is simulated for different parameter values.
This function runs the model for a range of values for any one parameter, while holding all other
paramter values fixed. The user can specify which parameter is sampled, and the simulation returns
for each parameter sample the peak and final value for U, I and V. Also returned is the varied
parameter and an indicator if steady state was reached.

Value

The function returns the output as a list, list element ’dat’ contains the data frame with results of
interest. The first column is called xvals and contains the values of the parameter that has been
varied as specified by ’samplepar’. The remaining columns contain peak and steady state values of
bacteria and immune response, Upeak, Ipeak, Vpeak, Usteady, Isteady and Vsteady. A final boolean
variable ’steady’ is returned for each simulation. It is TRUE if the simulation reached steady state,
otherwise FALSE.

Notes

The parameter dt only determines for which times the solution is returned, it is not the internal time
step. The latter is set automatically by the ODE solver.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter values or fractions > 1), the code will likely abort with an error message.

Author(s)

Andreas Handel

simulate_basicvirus_ode 21

See Also

See the shiny app documentation corresponding to this simulator function for more details on this
model.

Examples

To run the simulation with default parameters just call the function:
Not run: res <- simulate_basicvirus_modelexploration()
To choose parameter values other than the standard one, specify them, like such:
res <- simulate_basicvirus_modelexploration(samples=5, samplepar='dI', parmin=1, parmax=10)
You should then use the simulation result returned from the function, like this:
plot(res$dat[,"xvals"],res$data[,"Vpeak"],xlab='Parameter values',ylab='Virus Peak',type='l')

simulate_basicvirus_ode

Basic Virus model - ODE

Description

A basic virus infection model with 3 compartments, implemented as ODEs. The model tracks
uninfected and infected target cells and free virus. The processes modeled are infection, virus
production, uninfected cell birth and death, infected cell and virus death.

Usage

simulate_basicvirus_ode(
U = 1e+05,
I = 0,
V = 10,
n = 0,
dU = 0,
dI = 1,
dV = 4,
b = 1e-06,
p = 100,
g = 1,
tstart = 0,
tfinal = 50,
dt = 0.1

)

Arguments

U : Starting value for uninfected cells : numeric

I : Starting value for infected cells : numeric

V : Starting value for virus : numeric

n : Rate of new uninfected cell replenishment : numeric

22 simulate_basicvirus_ode

dU : Rate at which uninfected cells die : numeric

dI : Rate at which infected cells die : numeric

dV : Rate at which virus is cleared : numeric

b : Rate at which virus infects cells : numeric

p : Rate at which infected cells produce virus : numeric

g : Possible conversion factor for virus units : numeric

tstart : Start time of simulation : numeric

tfinal : Final time of simulation : numeric

dt : Times for which result is returned : numeric

Details

The model is implemented as a set of ordinary differential equations (ODE) using the deSolve
package. This code is part of the DSAIRM R package. For additional model details, see the
corresponding app in the DSAIRM package.

Value

The function returns the output as a list. The time-series from the simulation is returned as a
dataframe saved as list element ts. The ts dataframe has one column per compartment/variable.
The first column is time.

Notes

The parameter dt only determines for which times the solution is returned, it is not the internal time
step. The latter is set automatically by the ODE solver.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
have negative values for parameters), the code will likely abort with an error message.

Examples

To run the simulation with default parameters:
result <- simulate_basicvirus_ode()

simulate_basicvirus_stochastic 23

simulate_basicvirus_stochastic

Stochastic simulation of a compartmental acute virus infection model

Description

Simulation of a stochastic model with the following compartments: Uninfected target cells (U),
Infected cells (I), virus (V).

Usage

simulate_basicvirus_stochastic(
U = 10000,
I = 0,
V = 1,
n = 0,
dU = 0,
b = 1e-04,
dI = 1,
p = 10,
dV = 2,
rngseed = 111,
tfinal = 30

)

Arguments

U : initial number of target cells. Needs to be an integer : numeric

I : initial number of wild-type infected cells. Needs to be an integer. : numeric

V : initial number of resistant virus. Needs to be an integer. : numeric

n : rate of uninfected cell production : numeric

dU : rate of uninfected cell removal : numeric

b : level/rate of infection of cells : numeric

dI : rate of infected cell death : numeric

p : virus production rate : numeric

dV : virus removal rate : numeric

rngseed : seed for random number generator to allow reproducibility : numeric

tfinal : Final time of simulation : numeric

Details

A compartmental ID model with several states/compartments is simulated as a stochastic model
using the adaptive tau algorithm as implemented by ssa.adaptivetau() in the adaptivetau package.
See the manual of this package for more details. This code is part of the DSAIRM R package. For
additional model details, see the corresponding app in the DSAIRM package.

24 simulate_confint_fit

Value

A list. The list has only one element called ts. ts contains the time-series of the simulation. The 1st
column of ts is Time, the other columns are the model variables.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
have I0 > PopSize or any negative values or fractions > 1), the code will likely abort with an error
message.

Examples

To run the simulation with default parameters just call the function:
result <- simulate_basicvirus_stochastic()
To choose parameter values other than the standard one, specify them, like such:
result <- simulate_basicvirus_stochastic(U = 1e3, dI = 0.1)
You should then use the simulation result returned from the function, like this:
plot(result$ts[,"time"],result$ts[,"V"],xlab='Time',ylab='Virus',type='l')

simulate_confint_fit Fit a simple viral infection model and compute confidence intervals

Description

This function runs a simulation of a compartment model using a set of ordinary differential equa-
tions. The model describes a simple viral infection system.

Usage

simulate_confint_fit(
U = 1e+05,
I = 0,
V = 10,
n = 0,
dU = 0,
dI = 2,
p = 0.01,
g = 0,
b = 0.01,
blow = 1e-06,
bhigh = 1000,
dV = 2,
dVlow = 0.001,
dVhigh = 1000,
iter = 20,
nsample = 10,
rngseed = 100,
parscale = "lin"

)

simulate_confint_fit 25

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

n : rate of uninfected cell production : numeric

dU : rate at which uninfected cells die : numeric

dI : rate at which infected cells die : numeric

p : rate at which infected cells produce virus : numeric

g : unit conversion factor : numeric

b : rate at which virus infects cells : numeric

blow : lower bound for infection rate : numeric

bhigh : upper bound for infection rate : numeric

dV : rate at which infectious virus is cleared : numeric

dVlow : lower bound for virus clearance rate : numeric

dVhigh : upper bound for virus clearance rate : numeric

iter : max number of steps to be taken by optimizer : numeric

nsample : number of samples for conf int determination : numeric

rngseed : seed for random number generator to allow reproducibility : numeric

parscale : ’lin’ or ’log’ to fit parameters in linear or log space : character

Details

A simple compartmental ODE model mimicking acute viral infection is fitted to data. Confidence
intervals are computed by simple bootstrapping of the data using the boot R package. Confidence
intervals are computed using the percentage method in boot.ci. See the boot package for more
information. This code is part of the DSAIRM R package. For additional model details, see the
corresponding app in the DSAIRM package.

Value

The function returns a list containing the best fit time series, the best fit parameters for the data, the
final SSR, and the bootstrapped confidence intervals.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values), the code will likely abort with an error message.

Examples

To run the code with default parameters just call the function:
Not run: result <- simulate_confint_fit()
To apply different settings, provide them to the simulator function, like such:
result <- simulate_confint_fit(iter = 5, nsample = 5)

26 simulate_drugresistance_stochastic

simulate_drugresistance_stochastic

Stochastic simulation of a compartmental acute virus infection model
with treatment and drug resistant strain

Description

Simulation of a stochastic model with the following compartments: Uninfected target cells (U),
Infected with wild-type/sensitive and untreated (Is), infected with resistant (Ir), wild-type virus
(Vs), resistant virus (Vr).

Usage

simulate_drugresistance_stochastic(
U = 1e+05,
Is = 0,
Ir = 0,
Vs = 10,
Vr = 0,
b = 1e-05,
dI = 1,
e = 0,
m = 1e-04,
p = 100,
c = 4,
f = 0.1,
rngseed = 100,
tfinal = 100

)

Arguments

U : initial number of target cells : numeric

Is : initial number of wild-type infected cells : numeric

Ir : initial number of resistant infected cells : numeric

Vs : initial number of wild-type virus : numeric

Vr : initial number of resistant virus : numeric

b : level/rate of infection of cells : numeric

dI : rate of infected cell death : numeric

e : efficacy of drug : numeric

m : fraction of resistant mutants created : numeric

p : virus production rate : numeric

c : virus removal rate : numeric

f : fitness cost of resistant virus : numeric

simulate_fludrug_fit 27

rngseed : seed for random number generator to allow reproducibility : numeric
tfinal : maximum simulation time : numeric

Details

A compartmental ID model with several states/compartments is simulated as a stochastic model
using the adaptive tau algorithm as implemented by ssa.adaptivetau in the adpativetau package. See
the manual of this package for more details. The function returns the time series of the simulated
disease as output matrix, with one column per compartment/variable. The first column is time.

Value

A list. The list has only one element called ts. ts contains the time-series of the simulation. The 1st
column of ts is Time, the other columns are the model variables.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
have I0 > PopSize or any negative values or fractions > 1), the code will likely abort with an error
message.

Author(s)

Andreas Handel

References

See the manual for the adaptivetau package for details on the algorithm. The implemented model
is loosely based on: Handel et al 2007 PLoS Comp Bio "Neuraminidase Inhibitor Resistance in
Influenza: Assessing the Danger of Its Generation and Spread"

Examples

To run the simulation with default parameters just call the function:
result <- simulate_drugresistance_stochastic()
To choose parameter values other than the standard one, specify them, like such:
result <- simulate_drugresistance_stochastic(tfinal = 200, e = 0.5)
You should then use the simulation result returned from the function, like this:
plot(result$ts[,"time"],result$ts[,"Vs"],xlab='Time',ylab='Uninfected cells',type='l')

simulate_fludrug_fit Fitting a simple viral infection model with 2 types of drug mechanisms
to influenza data

Description

This function fits the simulate_virusandtx_ode model, which is a compartment model using a set of
ordinary differential equations. The model describes a simple viral infection system in the presence
of drug treatment. The user provides initial conditions and parameter values for the system. The
function simulates the ODE using an ODE solver from the deSolve package.

28 simulate_fludrug_fit

Usage

simulate_fludrug_fit(
U = 1e+05,
I = 0,
V = 1,
dI = 2,
dV = 4,
b = 0.01,
blow = 1e-05,
bhigh = 10,
p = 0.01,
plow = 1e-05,
phigh = 10,
g = 1,
glow = 0,
ghigh = 1000,
e = 0.5,
fitmodel = 1,
iter = 500

)

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

dI : rate at which infected cells die : numeric

dV : rate at which infectious virus is cleared : numeric

b : rate at which virus infects cells : numeric

blow : lower bound for infection rate : numeric

bhigh : upper bound for infection rate : numeric

p : rate at which infected cells produce virus : numeric

plow : lower bound for virus production rate : numeric

phigh : upper bound for virus production rate : numeric

g : unit conversion factor : numeric

glow : lower bound for unit conversion factor : numeric

ghigh : upper bound for unit conversion factor : numeric

e : drug efficacy (between 0-1) : numeric

fitmodel : fitting model 1 or 2 : numeric

iter : max number of steps to be taken by optimizer : numeric

simulate_modelcomparison_fit 29

Details

A simple compartmental ODE models describing an acute viral infection with drug treatment mech-
anism/model 1 assumes that drug treatment reduces rate of new virus production. mechanism/model
2 assumes that drug treatment reduces rate of new cell infection.

Value

The function returns a list containing the best fit timeseries, the best fit parameters, the data and the
AICc for the model.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values), the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the Shiny app documentation corresponding to this function for more details on this model.

Examples

To run the code with default parameters just call the function:
Not run: result <- simulate_fludrug_fit()
To apply different settings, provide them to the simulator function, like such:
result <- simulate_fludrug_fit(iter = 5, fitmodel = 1)

simulate_modelcomparison_fit

Fitting 2 simple viral infection models to influenza data

Description

This function runs a simulation of a compartment model using a set of ordinary differential equa-
tions. The model describes a simple viral infection system in the presence of drug treatment. The
user provides initial conditions and parameter values for the system. The function simulates the
ODE using an ODE solver from the deSolve package. The function returns a matrix containing
time-series of each variable and time.

30 simulate_modelcomparison_fit

Usage

simulate_modelcomparison_fit(
U = 1e+06,
I = 0,
V = 1,
X = 1,
dI = 1,
dV = 4,
p = 0.1,
g = 0,
k = 1e-06,
a = 1e-05,
alow = 1e-06,
ahigh = 1e-04,
b = 0.001,
blow = 1e-06,
bhigh = 0.01,
r = 0.1,
rlow = 0.01,
rhigh = 2,
dX = 1,
dXlow = 0.1,
dXhigh = 10,
fitmodel = 1,
iter = 10

)

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

X : initial level of immune response : numeric

dI : rate at which infected cells die : numeric

dV : rate at which infectious virus is cleared : numeric

p : rate at which infected cells produce virus : numeric

g : unit conversion factor : numeric

k : rate of killing of infected cells by T-cells (model 1) or virus by Ab (model 2) :
numeric

a : activation of T-cells (model 1) or growth of antibodies (model 2) : numeric

alow : lower bound for activation rate : numeric

ahigh : upper bound for activation rate : numeric

b : rate at which virus infects cells : numeric

blow : lower bound for infection rate : numeric

simulate_modelcomparison_fit 31

bhigh : upper bound for infection rate : numeric

r : rate of T-cell expansion (model 1) : numeric

rlow : lower bound for expansion rate : numeric

rhigh : upper bound for expansion rate : numeric

dX : rate at which antibodies decay (model 2) : numeric

dXlow : lower bound for decay rate : numeric

dXhigh : upper bound for decay rate : numeric

fitmodel : fitting model 1 or 2 : numeric

iter : max number of steps to be taken by optimizer : numeric

Details

Two simple compartmental ODE models mimicking acute viral infection with T-cells (model 1) or
antibodies (model 2) are fitted to data.

Value

The function returns a list containing the best fit timeseries, the best fit parameters, the data and the
AICc for the model.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values), the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the Shiny app documentation corresponding to this function for more details on this model.

Examples

To run the code with default parameters just call the function:
Not run: result <- simulate_modelcomparison_fit()
To apply different settings, provide them to the simulator function, like such:
result <- simulate_modelcomparison_fit(iter = 5, fitmodel = 1)

32 simulate_modelvariants_ode

simulate_modelvariants_ode

Simulation of a viral infection model with immune response The simu-
lation illustrates different alternative models.

Description

This function runs a simulation of a compartment model using a set of ordinary differential equa-
tions. The user provides initial conditions and parameter values for the system. The function
simulates the ODE using an ODE solver from the deSolve package. The function returns a matrix
containing time-series of each variable and time.

Usage

simulate_modelvariants_ode(
U = 1e+05,
I = 0,
V = 10,
F = 0,
A = 0,
n = 0,
dU = 0,
dI = 1,
dV = 4,
b = 1e-05,
p = 100,
pF = 1,
dF = 1,
f1 = 1e-04,
f2 = 0,
f3 = 0,
Fmax = 1000,
sV = 1e-10,
k1 = 0.001,
k2 = 0,
k3 = 0,
a1 = 1000,
a2 = 0,
a3 = 0,
hV = 1e-10,
k4 = 0.001,
k5 = 0,
k6 = 0,
sA = 1e-10,
dA = 0.1,
tstart = 0,
tfinal = 20,

simulate_modelvariants_ode 33

dt = 0.01
)

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

F : initial level of innate response : numeric

A : initial level of adaptive response : numeric

n : rate of uninfected cell production : numeric

dU : rate of natural death of uninfected cells : numeric

dI : rate at which infected cells die : numeric

dV : rate at which infectious virus is cleared : numeric

b : rate at which virus infects cells : numeric

p : rate at which infected cells produce virus : numeric

pF : rate of innate response production in absence of infection : numeric

dF : rate of innate response removal in absence of infection : numeric

f1 : growth of innate response alternative 1 : numeric

f2 : growth of innate response alternative 2 : numeric

f3 : growth of innate response alternative 3 : numeric

Fmax : maximum level of innate response in alternative 1 : numeric

sV : saturation of innate response growth in alternative 2 and 3 : numeric

k1 : action of innate response alternative 1 : numeric

k2 : action of innate response alternative 2 : numeric

k3 : action of innate response alternative 3 : numeric

a1 : growth of adaptive response alternative 1 : numeric

a2 : growth of adaptive response alternative 2 : numeric

a3 : growth of adaptive response alternative 3 : numeric

hV : saturation of adaptive response growth in alternative 2 and 3 : numeric

k4 : action of adaptive response alternative 1 : numeric

k5 : action of adaptive response alternative 2 : numeric

k6 : action of adaptive response alternative 3 : numeric

sA : saturation of adaptive response killing for alternative action 2 : numeric

dA : adaptive immune response decay : numeric

tstart : Start time of simulation : numeric

tfinal : Final time of simulation : numeric

dt : Times for which result is returned : numeric

34 simulate_pkpdmodel_ode

Details

A compartmental infection model is simulated as a set of ordinary differential equations, using an
ode solver from the deSolve package.

Value

The function returns the output from the odesolver as a matrix, with one column per compart-
ment/variable. The first column is time.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values), the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the Shiny app documentation corresponding to this simulator function for more details on this
model. See the manual for the deSolve package for details on the underlying ODE simulator algo-
rithm.

Examples

To run the simulation with default parameters just call the function:
result <- simulate_modelvariants_ode()
To choose parameter values other than the standard one, specify them, like such:
result <- simulate_modelvariants_ode(V = 100, k1 = 0 , k2 = 0, k3 = 1e-4)
You should then use the simulation result returned from the function, like this:
plot(result$ts[,"time"],result$ts[,"V"],xlab='Time',ylab='Virus',type='l',log='y')

simulate_pkpdmodel_ode

PkPd Virus model

Description

This function runs a simulation of the basic 3 compartment virus infection model including the
pharmacokinetics and pharmacodynamics of a drug. The user provides initial conditions and pa-
rameter values for the system. The function simulates the ODE using an ODE solver from the
deSolve package.

simulate_pkpdmodel_ode 35

Usage

simulate_pkpdmodel_ode(
U = 1e+05,
I = 0,
V = 10,
n = 0,
dU = 0,
dI = 1,
dV = 2,
b = 1e-05,
g = 1,
p = 10,
C0 = 1,
dC = 1,
C50 = 1,
k = 1,
Emax = 0,
txstart = 10,
txinterval = 1,
tstart = 0,
tfinal = 20,
dt = 0.01

)

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

n : rate of new uninfected cell replenishment : numeric

dU : rate at which uninfected cells die : numeric

dI : rate at which infected cells die : numeric

dV : rate at which infectious virus is cleared : numeric

b : rate at which virus infects cells : numeric

g : unit conversion factor : numeric

p : rate at which infected cells produce virus : numeric

C0 : drug dose given at specified times : numeric

dC : drug concentration decay rate : numeric

C50 : drug concentration at which effect is half maximum : numeric

k : steepness of concentration-dependent drug effect : numeric

Emax : maximum drug efficacy (0-1) : numeric

txstart : time of drug treatment start : numeric

txinterval : time between drug doses : numeric

36 simulate_pkpdmodel_ode

tstart : Start time of simulation : numeric

tfinal : Final time of simulation : numeric

dt : Times for which result is returned : numeric

Details

A basic virus infection model with drug PkPd

A simple compartmental model is simulated as a set of ordinary differential equations, using an
ode solver from the deSolve package. This code is part of the DSAIRM R package. For additional
model details, see the corresponding app in the DSAIRM package.

Value

A list. The list has only one element called ts. ts contains the time-series of the simulation. The 1st
column of ts is Time, the other columns are the model variables.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values), the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the Shiny app documentation corresponding to this simulator function for more details on this
model. See the manual for the deSolve package for details on the underlying ODE simulator algo-
rithm.

Examples

To run the simulation with default parameters just call the function:
result <- simulate_pkpdmodel_ode()
To choose parameter values other than the standard one, specify them, like such:
result <- simulate_pkpdmodel_ode(V = 100, txstart = 10, n = 1e5, dU = 1e-2)
You should then use the simulation result returned from the function, like this:
plot(result$ts[,"time"],result$ts[,"V"],xlab='Time',ylab='Virus',type='l',log='y')

simulate_usanalysis 37

simulate_usanalysis Simulation to illustrate uncertainty and sensitivity analysis

Description

This function performs uncertainty and sensitivity analysis using the simple, continuous-time basic
bacteria model.

Usage

simulate_usanalysis(
Bmin = 1,
Bmax = 10,
Imin = 1,
Imax = 10,
Bmaxmin = 1e+05,
Bmaxmax = 1e+06,
dBmin = 0.1,
dBmax = 0.1,
kmin = 1e-07,
kmax = 1e-07,
rmin = 0.001,
rmax = 0.001,
dImin = 1,
dImax = 2,
gmean = 0.5,
gvar = 0.1,
samples = 10,
rngseed = 100,
tstart = 0,
tfinal = 200,
dt = 0.1

)

Arguments

Bmin : lower bound for initial bacteria numbers : numeric

Bmax : upper bound for initial bacteria numbers : numeric

Imin : lower bound for initial immune response : numeric

Imax : upper bound for initial immune response : numeric

Bmaxmin : lower bound for maximum bacteria load : numeric

Bmaxmax : upper bound for maximum bacteria load : numeric

dBmin : lower bound for bacteria death rate : numeric

dBmax : upper bound for bacteria death rate : numeric

kmin : lower bound for immune response kill rate : numeric

38 simulate_usanalysis

kmax : upper bound for immune response kill rate : numeric

rmin : lower bound for immune response growth rate : numeric

rmax : upper bound for immune response growth rate : numeric

dImin : lower bound for immune response death rate : numeric

dImax : upper bound for immune response death rate : numeric

gmean : mean for bacteria growth rate : numeric

gvar : variance for bacteria growth rate : numeric

samples : number of LHS samples to run : numeric

rngseed : seed for random number generator : numeric

tstart : Start time of simulation : numeric

tfinal : Final time of simulation : numeric

dt : times for which result is returned : numeric

Details

A simple 2 compartment ODE model (the simple bacteria model introduced in the app of that name)
is simulated for different parameter values. The user provides ranges for the initial conditions and
parameter values and the number of samples. The function does Latin Hypercube Sampling (LHS)
of the parameters and runs the basic bacteria ODE model for each sample. Distribution for all
parameters is assumed to be uniform between the min and max values. The only exception is
the bacteria growth parameter, which is assumed to be gamma distributed with the specified mean
and variance. This code is part of the DSAIRM R package. For additional model details, see the
corresponding app in the DSAIRM package.

Value

The function returns the output as a list. The list element ’dat’ contains a data frame. The simula-
tion returns for each parameter sample the peak and final value for B and I. Also returned are all
parameter values as individual columns and an indicator stating if steady state was reached. A final
variable ’steady’ is returned for each simulation. It is TRUE if the simulation did reach steady state,
otherwise FALSE.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter values or fractions > 1), the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the Shiny app documentation corresponding to this simulator function for more details on this
model.

simulate_virusandir_ode 39

Examples

To run the simulation with default parameters just call the function:
Not run: result <- simulate_usanalysis()
To choose parameter values other than the standard one, specify them, like such:
result <- simulate_usanalysis(dImin = 0.1, dImax = 10, samples = 5, tfinal = 50)
You should then use the simulation result returned from the function, like this:
plot(result$dat[,"dI"],result$dat[,"Bpeak"],xlab='values for d',ylab='Peak Bacteria',type='l')

simulate_virusandir_ode

Simulation of a viral infection model with an immune response

Description

This function runs a simulation of a compartment model which tracks uninfected and infected cells,
virus, innate immune response, T-cells, B-cells and antibodies. The model is implemented as set of
ordinary differential equations using the deSolve package.

Usage

simulate_virusandir_ode(
U = 1e+05,
I = 0,
V = 10,
T = 0,
B = 0,
A = 0,
n = 0,
dU = 0,
dI = 1,
dV = 4,
b = 1e-05,
p = 1000,
sF = 0.01,
kA = 1e-05,
kT = 1e-05,
pF = 1,
dF = 1,
gF = 1,
Fmax = 1000,
hV = 1e-06,
hF = 1e-05,
gB = 1,
gT = 1e-04,
rT = 0.5,
rA = 10,
dA = 0.2,

40 simulate_virusandir_ode

tstart = 0,
tfinal = 30,
dt = 0.05

)

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

T : initial number of T cells : numeric

B : initial number of B cells : numeric

A : initial number of antibodies : numeric

n : rate of new uninfected cell replenishment : numeric

dU : rate at which uninfected cells die : numeric

dI : rate at which infected cells die : numeric

dV : rate at which infectious virus is cleared : numeric

b : rate at which virus infects cells : numeric

p : rate at which infected cells produce virus : numeric

sF : strength of innate response at reducing virus production : numeric

kA : rate of virus removal by antibodies : numeric

kT : rate of infected cell killing by T cells : numeric

pF : rate of innate response production in absence of infection : numeric

dF : rate of innate response removal in absence of infection : numeric

gF : rate of innate response growth during infection : numeric

Fmax : maximum level of innate response : numeric

hV : innate growth saturation constant : numeric

hF : B-cell growth saturation constant : numeric

gB : maximum growth rate of B cells : numeric

gT : T-cell induction rate : numeric

rT : T-cell expansion rate : numeric

rA : rate of antibody production by B cells : numeric

dA : rate of antibody decay : numeric

tstart : start time of simulation : numeric

tfinal : final time of simulation : numeric

dt : times for which result is returned : numeric

Details

A compartmental infection model is simulated as a set of ordinary differential equations, using an
ode solver from the deSolve package. This code is part of the DSAIRM R package. For additional
model details, see the corresponding app in the DSAIRM package.

simulate_virusandtx_ode 41

Value

A list. The list has only one element, called ts. ts contains the time-series of the simulation. The 1st
column of ts is time, the other columns are the model variables.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values), the code will likely abort with an error message.

Author(s)

Andreas Handel

See Also

See the Shiny app documentation corresponding to this simulator function for more details on this
model. See the manual for the deSolve package for details on the underlying ODE simulator algo-
rithm.

Examples

To run the simulation with default parameters just call the function:
result <- simulate_virusandir_ode()
To choose parameter values other than the standard one, specify them, like such:
result <- simulate_virusandir_ode(V = 100, tfinal = 50, n = 1e5, dU = 1e-2, kT=1e-7)
You should then use the simulation result returned from the function, like this:
plot(result$ts[,"time"],result$ts[,"V"],xlab='Time',ylab='Virus',type='l',log='y')

simulate_virusandtx_ode

Simulation of a basic viral infection model with drug treatment

Description

This function runs a simulation of a compartment model using a set of ordinary differential equa-
tions. The model describes a simple viral infection system in the presence of drug treatment. The
user provides initial conditions and parameter values for the system. The function simulates the
ODE using an ODE solver from the deSolve package. The function returns a list containing time-
series of each variable and time. inspired by a study on HCV and IFN treatment (Neumann et al.
1998, Science)

Usage

simulate_virusandtx_ode(
U = 1e+05,
I = 0,
V = 10,
n = 10000,

42 simulate_virusandtx_ode

dU = 0.1,
dI = 1,
dV = 2,
b = 1e-05,
p = 10,
g = 1,
f = 0,
e = 0,
tstart = 0,
tfinal = 30,
dt = 0.1,
steadystate = FALSE,
txstart = 0

)

Arguments

U : initial number of uninfected target cells : numeric

I : initial number of infected target cells : numeric

V : initial number of infectious virions : numeric

n : rate of uninfected cell replenishment : numeric

dU : rate at which uninfected cells die : numeric

dI : rate at which infected cells die : numeric

dV : rate at which infectious virus is cleared : numeric

b : rate at which virus infects cells : numeric

p : rate at which infected cells produce virus : numeric

g : conversion between experimental and model virus units : numeric

f : strength of cell infection reduction by drug : numeric

e : strength of virus production reduction by drug : numeric

tstart : Start time of simulation : numeric

tfinal : Final time of simulation : numeric

dt : times for which result is returned : numeric

steadystate : start simulation at steady state : logical

txstart : time at which treatment starts : numeric

Details

A simple compartmental model is simulated as a set of ordinary differential equations, using an
ode solver from the deSolve package. if the steadystate input is set to TRUE, the starting values
for U, I and V are set to their steady state values. Those steady state values are computed from
the parameter values. See the Basic Virus Model To-do section for an explanation. In this case,
user supplied values for U0, I0, V0 are ignored. This code is part of the DSAIRM R package. For
additional model details, see the corresponding app in the DSAIRM package.

simulate_virusandtx_ode 43

Value

A list. The list has only one element called ts. ts contains the time-series of the simulation. The 1st
column of ts is Time, the other columns are the model variables.

Warning

This function does not perform any error checking. So if you try to do something nonsensical (e.g.
specify negative parameter or starting values), the code will likely abort with an error message.

Examples

To run the simulation with default parameters just call the function:
result <- simulate_virusandtx_ode()
To choose parameter values other than the standard one, specify them, like such:
result <- simulate_virusandtx_ode(V = 100, tfinal = 100, n = 1e5, dU = 1e-2)
You should then use the simulation result returned from the function, like this:
plot(result$ts[,"time"],result$ts[,"V"],xlab='Time',ylab='Virus',type='l',log='y')

Index

∗ datasets
hayden96flu, 10

DSAIRM, 2
dsairmmenu, 3

generate_documentation, 4
generate_equations, 4
generate_fctcall, 5
generate_ggplot, 6
generate_plotly, 7
generate_shinyinput, 8
generate_text, 9

hayden96flu, 10

run_model, 11

simulate_basicbacteria_discrete, 12
simulate_basicbacteria_modelexploration,

13
simulate_basicbacteria_ode, 15
simulate_basicvirus_fit, 17
simulate_basicvirus_modelexploration,

19
simulate_basicvirus_ode, 21
simulate_basicvirus_stochastic, 23
simulate_confint_fit, 24
simulate_drugresistance_stochastic, 26
simulate_fludrug_fit, 27
simulate_modelcomparison_fit, 29
simulate_modelvariants_ode, 32
simulate_pkpdmodel_ode, 34
simulate_usanalysis, 37
simulate_virusandir_ode, 39
simulate_virusandtx_ode, 41

44

	DSAIRM
	dsairmmenu
	generate_documentation
	generate_equations
	generate_fctcall
	generate_ggplot
	generate_plotly
	generate_shinyinput
	generate_text
	hayden96flu
	run_model
	simulate_basicbacteria_discrete
	simulate_basicbacteria_modelexploration
	simulate_basicbacteria_ode
	simulate_basicvirus_fit
	simulate_basicvirus_modelexploration
	simulate_basicvirus_ode
	simulate_basicvirus_stochastic
	simulate_confint_fit
	simulate_drugresistance_stochastic
	simulate_fludrug_fit
	simulate_modelcomparison_fit
	simulate_modelvariants_ode
	simulate_pkpdmodel_ode
	simulate_usanalysis
	simulate_virusandir_ode
	simulate_virusandtx_ode
	Index

